帳號:guest(3.149.24.9)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林茲瑩
作者(外文):Lin, Tzu-Ying
論文名稱(中文):識別新型調節子 NHX-3 在 C. elegans 粒線體軸突運輸中的作用
論文名稱(外文):Identifying the role of a novel regulator NHX-3 in axonal transport of mitochondria in C. elegans
指導教授(中文):王歐力
指導教授(外文):Wagner, Oliver
口試委員(中文):許翺麟
張壯榮
口試委員(外文):Hsu, Ao-Lin
Chang, Chuang-Rung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:108080571
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:61
中文關鍵詞:粒線體線蟲軸突運輸粒線體運輸
外文關鍵詞:mitochondriaC. elegansaxonal transportmitochondrial transportNHX-3
相關次數:
  • 推薦推薦:0
  • 點閱點閱:141
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
神經元強烈地依賴粒線體,因為粒線體對神經元的生長、生存和功能很重要。粒線體動力學的改變是各類神經退化性疾病常見的特徵。因此,研究粒線體動力學在分子基礎上如何調節至關重要。我們以綠色螢光蛋白標定線粒體的線蟲,探究軸突中線粒體的運輸情況。從反向基因篩選中,發現基因nhx-3降低ALM神經元近端軸突中的線粒體密度,線粒體形態則沒有改變。我們表明NHX-3在神經元組織中表達,並與粒線體共定位。從運動性分析發現,nhx-3(ok1049)突變體的逆行總運行長度減少,淨運行長度增加:然而,線粒體的順向和逆向速度沒有影響。除此之外,在nhx-3(ok1049)突變體中,線粒體呈現較低頻率的方向變化和更持久移動。對NHX-3表現量有正向調節作用的轉錄因子HBL-1確實在nhx-3突變中觀察到其影響力。在hbl-1(mg285)突變體中,粒線體的逆行速度和逆行總運行長度顯著減少,淨運行長度顯著增加。雙重突變分析表明,nhx-3不會進一步影響hbl-1基因的功能。基於這些結果,我們推測NHX-3在C. elegans中對粒線體逆行軸突運輸發揮關鍵作用。
  由於STRING 分子互動組的數據揭示 NHX-3 和 KIF1 之間的關聯,我們分析 KIF1A/UNC-104 在 nhx-3 突變中的作用。的確,unc-104似乎在線粒體運輸中發揮作用。此外,觸感和扭動檢測揭示機械感知和運動的缺陷。趨向性分析證明纖毛在nhx-3突變體中也可能存在缺陷。最後,我們發現產卵缺陷和短化的體長。這些可量化的表現型可能有助於未來的抑制篩選,並開發一種疾病模型。
Neurons are strongly dependent on mitochondria, essential to neuronal growth, survival, and function. Alterations in mitochondrial dynamics are common hallmark in various types of neurodegenerative diseases. Thus, it is critical to study how mitochondrial dynamics is regulated on the molecular level. We investigated the transport of mitochondria in axons using worms expressing GFP-labeled mitochondria. From a reverse genetic screen, a gene nhx-3 was identified that reduces mitochondrial density in proximal axons of ALM neurons, while mitochondrial morphologies remain unaltered. We show that NHX-3 is expressed in neuronal tissues as well as co-localize with mitochondria. From motility analysis, we revealed that retrograde total run length decreased and that net run length increased; however, anterograde and retrograde velocity of mitochondria were not affected in nhx-3(ok1049) mutants. Nevertheless, mitochondria undergo less frequent reversals and move more persistent in nhx-3(ok1049) mutants. Furthermore, transcription factor HBL-1, known to positively regulates expression of NHX-3, indeed facilitated observed effects in nhx-3 mutant backgrounds: Retrograde velocity and total run length both were significantly decreased as well as net run length was significantly increased in hbl-1(mg285) mutants. Double mutant analysis suggests that nhx-3 does not further affect the epistasis function of the hbl-1 gene. Based on these results, we propose that NHX-3 may play a critical role in retrograde axonal transport of mitochondria in C. elegans.
Because data from STRING interactome tool revealed a link between NHX-3 and KIF1, we analyzed the role of KIF1A/UNC-104 on nhx-3 mutations. Indeed unc-104 seems to play a role in mitochondrial transport. Furthermore, touch and thrashing assays revealed defects in mechanosensation as well as in locomotion. Quadrant chemotaxis assay demonstrates that cilia may be defective in nhx-3 mutants as well. Lastly, we identified egg-laying defects and shortened body length in nhx-3 mutants. These quantifiable phenotypes may aid in future suppressor screens and to develop a disease model.
Acknowledgments ii
摘要 iii
Abstract iv
1 Introduction 3
1.1 C. elegans as a model organism 3
1.2 Transport of mitochondria in neurons 4
1.2.1 Importance of mitochondrial distribution in neurons 4
1.2.2 Machinery and regulation of mitochondrial transport 5
1.2.3 Dysfunctional mitochondria and neurodegenerative diseases 7
1.4 Kinesin-3 KIF1A/UNC-104 in C. elegans 9
1.5 Specific aim of this study 10
2 Materials & Methods 11
2.1 Worm maintenance 11
2.2 Reagents 11
2.2.1 M9 buffer 11
2.2.2 LB medium 11
2.2.3 Genomic DNA isolation buffer 11
2.2.4 Bleach solution 12
2.3 Plasmid constructs 12
2.4 C. elegans strains 12
2.5 RNA interference by feeding 13
2.6 Microinjection 14
2.7 Outcrossing, crossing, and genotyping 15
2.8 Worm imaging 16
2.9 Image analysis 16
2.9.1 Cluster analysis 16
2.9.2 Motility analysis 17
2.9.3 Colocalization analysis 17
2.9.4 Fluorescence intensity analysis 18
2.10 Behavioral assays 18
2.10.1 Thrashing assays 18
2.10.2 Touch response assays 18
2.10.3 Quadrant chemotaxis assay 19
2.10.4 Egg-laying assays 19
2.11 Body length analysis 19
2.12 Statistical analysis 19
3 Results 20
3.3 Expression patterns of NHX-3 22
3.4 Colocalization of NHX-3 and mitochondria 23
4 Discussion 28
4.1 The role of NHX-3 in axonal mitochondrial transport 28
4.2 Effects of HBL-1 on retrograde transport of mitochondria 30
4.3 Disrupting retrograde transport of mitochondria in axons 30
4.4 The relation of UNC-104 and NHX-3 in axonal mitochondrial transport 31
4.5 Defective phenotypes in nhx-3(ok1049) mutants 32
5 References 35
7 Figures 41
8 Appendix 57

Abeliovich, A., and Gitler, A.D. (2016). Defects in trafficking bridge Parkinson's disease pathology and genetics. Nature 539, 207-216.
Ahearn, G.A., Mandal, P.K., and Mandal, A. (2001). Biology of the 2Na+/1H+ antiporter in invertebrates. J Exp Zool 289, 232-244.
Alexander, A.G., Marfil, V., and Li, C. (2014). Use of Caenorhabditis elegans as a model to study Alzheimer's disease and other neurodegenerative diseases. Front Genet 5, 279.
Annesley, S.J., and Fisher, P.R. (2019). Mitochondria in Health and Disease. Cells 8.
Barlan, K., and Gelfand, V.I. (2017). Microtubule-Based Transport and the Distribution, Tethering, and Organization of Organelles. Cold Spring Harb Perspect Biol 9.
Bhan, P., Muthaiyan Shanmugam, M., Wang, D., Bayansan, O., Chen, C.W., and Wagner, O.I. (2020). Characterization of TAG-63 and its role on axonal transport in C. elegans. Traffic 21, 231-249.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Byrne, J.J., Soh, M.S., Chandhok, G., Vijayaraghavan, T., Teoh, J.S., Crawford, S., Cobham, A.E., Yapa, N.M.B., Mirth, C.K., and Neumann, B. (2019). Disruption of mitochondrial dynamics affects behaviour and lifespan in Caenorhabditis elegans. Cell Mol Life Sci 76, 1967-1985.
Cagalinec, M., Safiulina, D., Liiv, M., Liiv, J., Choubey, V., Wareski, P., Veksler, V., and Kaasik, A. (2013). Principles of the mitochondrial fusion and fission cycle in neurons. J Cell Sci 126, 2187-2197.
Calkins, M.J., Manczak, M., Mao, P., Shirendeb, U., and Reddy, P.H. (2011). Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. Hum Mol Genet 20, 4515-4529.
Chang, D.T., Rintoul, G.L., Pandipati, S., and Reynolds, I.J. (2006). Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiol Dis 22, 388-400.
Chen, H., and Chan, D.C. (2009). Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet 18, R169-176.
Chen, H., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E., and Chan, D.C. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160, 189-200.
Chen, Y., and Sheng, Z.H. (2013). Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J Cell Biol 202, 351-364.
Chiba, K., Takahashi, H., Chen, M., Obinata, H., Arai, S., Hashimoto, K., Oda, T., McKenney, R.J., and Niwa, S. (2019). Disease-associated mutations hyperactivate KIF1A motility and anterograde axonal transport of synaptic vesicle precursors. Proc Natl Acad Sci U S A 116, 18429-18434.
Consortium, C.e.S. (1998). Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012-2018.
Cooper, J.F., and Van Raamsdonk, J.M. (2018). Modeling Parkinson's Disease in C. elegans. J Parkinsons Dis 8, 17-32.
Cueva, J.G., Mulholland, A., and Goodman, M.B. (2007). Nanoscale organization of the MEC-4 DEG/ENaC sensory mechanotransduction channel in Caenorhabditis elegans touch receptor neurons. J Neurosci 27, 14089-14098.
Diamant, A.G., and Carter, A.P. (2013). Dynein Family Classification. In Encyclopedia of Biophysics, G.C.K. Roberts, ed. (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 552-558.
Ewald, C.Y., Raps, D.A., and Li, C. (2012). APL-1, the Alzheimer's Amyloid precursor protein in Caenorhabditis elegans, modulates multiple metabolic pathways throughout development. Genetics 191, 493-507.
Fuchs, F., and Westermann, B. (2005). Role of Unc104/KIF1-related motor proteins in mitochondrial transport in Neurospora crassa. Mol Biol Cell 16, 153-161.
Glater, E.E., Megeath, L.J., Stowers, R.S., and Schwarz, T.L. (2006). Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173, 545-557.
Gross, S.P. (2004). Hither and yon: a review of bi-directional microtubule-based transport. Phys Biol 1, R1-11.
Hall, D.H., and Hedgecock, E.M. (1991). Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65, 837-847.
Han, S.M., Baig, H.S., and Hammarlund, M. (2016). Mitochondria Localize to Injured Axons to Support Regeneration. Neuron 92, 1308-1323.
Hancock, W.O. (2014). Bidirectional cargo transport: moving beyond tug of war. Nat Rev Mol Cell Biol 15, 615-628.
Hendus-Altenburger, R., Kragelund, B.B., and Pedersen, S.F. (2014). Structural dynamics and regulation of the mammalian SLC9A family of Na(+)/H(+) exchangers. Curr Top Membr 73, 69-148.
Hirokawa, N., Niwa, S., and Tanaka, Y. (2010). Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610-638.
Holleran, E.A., Karki, S., and Holzbaur, E.L. (1998). The role of the dynactin complex in intracellular motility. Int Rev Cytol 182, 69-109.
Ichishita, R., Tanaka, K., Sugiura, Y., Sayano, T., Mihara, K., and Oka, T. (2008). An RNAi screen for mitochondrial proteins required to maintain the morphology of the organelle in Caenorhabditis elegans. J Biochem 143, 449-454.
Ishihara, N., Nomura, M., Jofuku, A., Kato, H., Suzuki, S.O., Masuda, K., Otera, H., Nakanishi, Y., Nonaka, I., Goto, Y., et al. (2009). Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11, 958-966.
Janzen, E., Mendoza-Ferreira, N., Hosseinibarkooie, S., Schneider, S., Hupperich, K., Tschanz, T., Grysko, V., Riessland, M., Hammerschmidt, M., Rigo, F., et al. (2018). CHP1 reduction ameliorates spinal muscular atrophy pathology by restoring calcineurin activity and endocytosis. Brain 141, 2343-2361.
Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G., and Ahringer, J. (2001). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2, RESEARCH0002.
King, S.J., and Schroer, T.A. (2000). Dynactin increases the processivity of the cytoplasmic dynein motor. Nat Cell Biol 2, 20-24.
Klopfenstein, D.R., Tomishige, M., Stuurman, N., and Vale, R.D. (2002). Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109, 347-358.
Kodavati, M., Wang, H., and Hegde, M.L. (2020). Altered Mitochondrial Dynamics in Motor Neuron Disease: An Emerging Perspective. Cells 9.
Kolay, S., Basu, U., and Raghu, P. (2016). Control of diverse subcellular processes by a single multi-functional lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Biochem J 473, 1681-1692.
Kumar, J., Choudhary, B.C., Metpally, R., Zheng, Q., Nonet, M.L., Ramanathan, S., Klopfenstein, D.R., and Koushika, S.P. (2010). The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLoS Genet 6, e1001200.
Lee, I., Lehner, B., Crombie, C., Wong, W., Fraser, A.G., and Marcotte, E.M. (2008). A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat Genet 40, 181-188.
Levy, J.R., Sumner, C.J., Caviston, J.P., Tokito, M.K., Ranganathan, S., Ligon, L.A., Wallace, K.E., LaMonte, B.H., Harmison, G.G., Puls, I., et al. (2006). A motor neuron disease-associated mutation in p150Glued perturbs dynactin function and induces protein aggregation. J Cell Biol 172, 733-745.
Lin, M.Y., and Sheng, Z.H. (2015). Regulation of mitochondrial transport in neurons. Exp Cell Res 334, 35-44.
Lin, S.Y., Johnson, S.M., Abraham, M., Vella, M.C., Pasquinelli, A., Gamberi, C., Gottlieb, E., and Slack, F.J. (2003). The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev Cell 4, 639-650.
Macaskill, A.F., Rinholm, J.E., Twelvetrees, A.E., Arancibia-Carcamo, I.L., Muir, J., Fransson, A., Aspenstrom, P., Attwell, D., and Kittler, J.T. (2009). Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61, 541-555.
Mandal, A., Wong, H.C., Pinter, K., Mosqueda, N., Beirl, A., Lomash, R.M., Won, S., Kindt, K.S., and Drerup, C.M. (2021). Retrograde Mitochondrial Transport Is Essential for Organelle Distribution and Health in Zebrafish Neurons. J Neurosci 41, 1371-1392.
Margie, O., Palmer, C., and Chin-Sang, I. (2013). C. elegans chemotaxis assay. J Vis Exp, e50069.
Martinez, B.A., Caldwell, K.A., and Caldwell, G.A. (2017). C. elegans as a model system to accelerate discovery for Parkinson disease. Curr Opin Genet Dev 44, 102-109.
McCloy, R.A., Rogers, S., Caldon, C.E., Lorca, T., Castro, A., and Burgess, A. (2014). Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13, 1400-1412.
Mironov, S.L. (2007). ADP regulates movements of mitochondria in neurons. Biophys J 92, 2944-2952.
Morsci, N.S., Hall, D.H., Driscoll, M., and Sheng, Z.H. (2016). Age-Related Phasic Patterns of Mitochondrial Maintenance in Adult Caenorhabditis elegans Neurons. J Neurosci 36, 1373-1385.
Nakamura, N., Miyake, Y., Matsushita, M., Tanaka, S., Inoue, H., and Kanazawa, H. (2002). KIF1Bbeta2, capable of interacting with CHP, is localized to synaptic vesicles. J Biochem 132, 483-491.
Nangaku, M., Sato-Yoshitake, R., Okada, Y., Noda, Y., Takemura, R., Yamazaki, H., and Hirokawa, N. (1994). KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79, 1209-1220.
Nehrke, K., and Melvin, J.E. (2002). The NHX family of Na+-H+ exchangers in Caenorhabditis elegans. J Biol Chem 277, 29036-29044.
Niwa, R., Hada, K., Moliyama, K., Ohniwa, R.L., Tan, Y.M., Olsson-Carter, K., Chi, W., Reinke, V., and Slack, F.J. (2009). C. elegans sym-1 is a downstream target of the hunchback-like-1 developmental timing transcription factor. Cell Cycle 8, 4147-4154.
Niwa, R., Zhou, F., Li, C., and Slack, F.J. (2008). The expression of the Alzheimer's amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans. Dev Biol 315, 418-425.
Ohashi, K.G., Han, L., Mentley, B., Wang, J., Fricks, J., and Hancock, W.O. (2019). Load-dependent detachment kinetics plays a key role in bidirectional cargo transport by kinesin and dynein. Traffic 20, 284-294.
Otsuka, A.J., Jeyaprakash, A., Garcia-Anoveros, J., Tang, L.Z., Fisk, G., Hartshorne, T., Franco, R., and Born, T. (1991). The C. elegans unc-104 gene encodes a putative kinesin heavy chain-like protein. Neuron 6, 113-122.
Panchal, K., and Tiwari, A.K. (2019). Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 47, 151-173.
Panchal, K., and Tiwari, A.K. (2021). Miro (Mitochondrial Rho GTPase), a key player of mitochondrial axonal transport and mitochondrial dynamics in neurodegenerative diseases. Mitochondrion 56, 118-135.
Pathak, D., Sepp, K.J., and Hollenbeck, P.J. (2010). Evidence that myosin activity opposes microtubule-based axonal transport of mitochondria. J Neurosci 30, 8984-8992.
Paul, D., Chipurupalli, S., Justin, A., Raja, K., and Mohankumar, S.K. (2020). Caenorhabditis elegans as a possible model to screen anti-Alzheimer's therapeutics. J Pharmacol Toxicol Methods 106, 106932.
Pilling, A.D., Horiuchi, D., Lively, C.M., and Saxton, W.M. (2006). Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17, 2057-2068.
Rawson, R.L., Yam, L., Weimer, R.M., Bend, E.G., Hartwieg, E., Horvitz, H.R., Clark, S.G., and Jorgensen, E.M. (2014). Axons degenerate in the absence of mitochondria in C. elegans. Curr Biol 24, 760-765.
Ray, A., Martinez, B.A., Berkowitz, L.A., Caldwell, G.A., and Caldwell, K.A. (2014). Mitochondrial dysfunction, oxidative stress, and neurodegeneration elicited by a bacterial metabolite in a C. elegans Parkinson's model. Cell Death Dis 5, e984.
Rieckher, M., Kourtis, N., Pasparaki, A., and Tavernarakis, N. (2009). Transgenesis in Caenorhabditis elegans. Methods Mol Biol 561, 21-39.
Rosivatz, E., and Woscholski, R. (2011). Removal or masking of phosphatidylinositol(4,5)bisphosphate from the outer mitochondrial membrane causes mitochondrial fragmentation. Cell Signal 23, 478-486.
Sabharwal, V., and Koushika, S.P. (2019). Crowd Control: Effects of Physical Crowding on Cargo Movement in Healthy and Diseased Neurons. Front Cell Neurosci 13, 470.
Saxton, W.M., and Hollenbeck, P.J. (2012). The axonal transport of mitochondria. J Cell Sci 125, 2095-2104.
Sheng, Z.H., and Cai, Q. (2012). Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 13, 77-93.
Stefanakis, N., Carrera, I., and Hobert, O. (2015). Regulatory Logic of Pan-Neuronal Gene Expression in C. elegans. Neuron 87, 733-750.
Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., et al. (2015). STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43, D447-452.
Tanaka, K., Sugiura, Y., Ichishita, R., Mihara, K., and Oka, T. (2011). KLP6: a newly identified kinesin that regulates the morphology and transport of mitochondria in neuronal cells. J Cell Sci 124, 2457-2465.
Thompson-Peer, K.L., Bai, J., Hu, Z., and Kaplan, J.M. (2012). HBL-1 patterns synaptic remodeling in C. elegans. Neuron 73, 453-465.
Tien, N.W., Wu, G.H., Hsu, C.C., Chang, C.Y., and Wagner, O.I. (2011). Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor's motility characteristics in C. elegans neurons. Neurobiol Dis 43, 495-506.
Tomishige, M., Klopfenstein, D.R., and Vale, R.D. (2002). Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science 297, 2263-2267.
Vale, R.D. (2003). The molecular motor toolbox for intracellular transport. Cell 112, 467-480.
Wagner, O.I., Esposito, A., Kohler, B., Chen, C.W., Shen, C.P., Wu, G.H., Butkevich, E., Mandalapu, S., Wenzel, D., Wouters, F.S., et al. (2009). Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. Proc Natl Acad Sci U S A 106, 19605-19610.
Wang, X., and Schwarz, T.L. (2009). The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell 136, 163-174.
Welte, M.A. (2004). Bidirectional transport along microtubules. Curr Biol 14, R525-537.
White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314, 1-340.
Wu, G.H., Muthaiyan Shanmugam, M., Bhan, P., Huang, Y.H., and Wagner, O.I. (2016). Identification and Characterization of LIN-2(CASK) as a Regulator of Kinesin-3 UNC-104(KIF1A) Motility and Clustering in Neurons. Traffic 17, 891-907.
Yoshimura, J., Ichikawa, K., Shoura, M.J., Artiles, K.L., Gabdank, I., Wahba, L., Smith, C.L., Edgley, M.L., Rougvie, A.E., Fire, A.Z., et al. (2019). Recompleting the Caenorhabditis elegans genome. Genome Res 29, 1009-1022.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *