|
1. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. (2020). The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5(4), 536–544. https://doi.org/10.1038/s41564-020-0695-z 2. WHO Coronavirus (COVID-19) Dashboard. (n.d.). Retrieved January 13, 2022, from https://covid19.who.int 3. Redondo, N., Zaldívar-López, S., Garrido, J. J., & Montoya, M. (2021). SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns. Frontiers in Immunology, 12, 708264. https://doi.org/10.3389/fimmu.2021.708264 4. Ashour, H. M., Elkhatib, W. F., Rahman, M. M., & Elshabrawy, H. A. (2020). Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens (Basel, Switzerland), 9(3), E186. https://doi.org/10.3390/pathogens9030186 5. Shang, J., Han, N., Chen, Z., Peng, Y., Li, L., Zhou, H., Ji, C., Meng, J., Jiang, T., & Wu, A. (2020). Compositional diversity and evolutionary pattern of coronavirus accessory proteins. Briefings in Bioinformatics, bbaa262. https://doi.org/10.1093/bib/bbaa262 6. Huang, Y., Yang, C., Xu, X., Xu, W., & Liu, S. (2020). Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 41(9), 1141–1149. https://doi.org/10.1038/s41401-020-0485-4 7. Harvey, W. T., Carabelli, A. M., Jackson, B., Gupta, R. K., Thomson, E. C., Harrison, E. M., Ludden, C., Reeve, R., Rambaut, A., Peacock, S. J., & Robertson, D. L. (2021). SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology, 19(7), 409–424. https://doi.org/10.1038/s41579-021-00573-0 8. Duffy, S. (2018). Why are RNA virus mutation rates so damn high? PLOS Biology, 16(8), e3000003. https://doi.org/10.1371/journal.pbio.3000003 9. Rambaut, A., Holmes, E. C., O’Toole, Á., Hill, V., McCrone, J. T., Ruis, C., du Plessis, L., & Pybus, O. G. (2020). A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nature Microbiology, 5(11), 1403–1407. https://doi.org/10.1038/s41564-020-0770-5 10. Tracking SARS-CoV-2 variants. (n.d.). Retrieved January 17, 2022, from https://www.who.int/emergencies/what-we-do/tracking-SARS-CoV-2-variants 11. Hadfield, J., Megill, C., Bell, S. M., Huddleston, J., Potter, B., Callender, C., Sagulenko, P., Bedford, T., & Neher, R. A. (2018). Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics, 34(23), 4121–4123. https://doi.org/10.1093/bioinformatics/bty407 12. Year-letter Genetic Clade Naming for SARS-CoV-2 on Nextstrain.org. (n.d.). Retrieved January 14, 2022, from https://nextstrain.org//blog/2020-06-02-SARSCoV2-clade-naming 13. Boehm, E., Kronig, I., Neher, R. A., Eckerle, I., Vetter, P., & Kaiser, L. (2021). Novel SARS-CoV-2 variants: The pandemics within the pandemic. Clinical Microbiology and Infection, 27(8), 1109–1117. https://doi.org/10.1016/j.cmi.2021.05.022 14. Wang, K., Jia, Z., Bao, L., Wang, L., Cao, L., Chi, H., Hu, Y., Li, Q., Jiang, Y., Zhu, Q., Deng, Y., Liu, P., Wang, N., Wang, L., Liu, M., Li, Y., Zhu, B., Fan, K., Fu, W., … Wang, X. (2021). A subset of Memory B-derived antibody repertoire from 3-dose vaccinees is ultrapotent against diverse and highly transmissible SARS-CoV-2 variants, including Omicron (p. 2021.12.24.474084). https://doi.org/10.1101/2021.12.24.474084 15. Yang, H.-C., Chen, C., Wang, J.-H., Liao, H.-C., Yang, C.-T., Chen, C.-W., Lin, Y.-C., Kao, C.-H., Lu, M.-Y. J., & Liao, J. C. (2020). Analysis of genomic distributions of SARS-CoV-2 reveals a dominant strain type with strong allelic associations. Proceedings of the National Academy of Sciences, 117(48), 30679–30686. https://doi.org/10.1073/pnas.2007840117 16. Yi, K., Kim, S. Y., Bleazard, T., Kim, T., Youk, J., & Ju, Y. S. (2021). Mutational spectrum of SARS-CoV-2 during the global pandemic. Experimental & Molecular Medicine, 53(8), 1229–1237. https://doi.org/10.1038/s12276-021-00658-z 17. Tonkin-Hill, G., Martincorena, I., Amato, R., Lawson, A. R., Gerstung, M., Johnston, I., Jackson, D. K., Park, N., Lensing, S. V., Quail, M. A., Gonçalves, S., Ariani, C., Spencer Chapman, M., Hamilton, W. L., Meredith, L. W., Hall, G., Jahun, A. S., Chaudhry, Y., Hosmillo, M., … Wellcome Sanger Institute COVID-19 Surveillance Team. (2021). Patterns of within-host genetic diversity in SARS-CoV-2. ELife, 10, e66857. https://doi.org/10.7554/eLife.66857 18. Nielsen, R. (2005). Molecular Signatures of Natural Selection. Annual Review of Genetics, 39(1), 197–218. https://doi.org/10.1146/annurev.genet.39.073003.112420 19. Nielsen, R., & Yang, Z. (2003). Estimating the Distribution of Selection Coefficients from Phylogenetic Data with Applications to Mitochondrial and Viral DNA. Molecular Biology and Evolution, 20(8), 1231–1239. https://doi.org/10.1093/molbev/msg147 20. Rocha, E. P. C., Smith, J. M., Hurst, L. D., Holden, M. T. G., Cooper, J. E., Smith, N. H., & Feil, E. J. (2006). Comparisons of dN/dS are time dependent for closely related bacterial genomes. Journal of Theoretical Biology, 239(2), 226–235. https://doi.org/10.1016/j.jtbi.2005.08.037 21. Mugal, C. F., Wolf, J. B. W., & Kaj, I. (2014). Why Time Matters: Codon Evolution and the Temporal Dynamics of dN/dS. Molecular Biology and Evolution, 31(1), 212–231. https://doi.org/10.1093/molbev/mst192 22. Bergquist, S., Otten, T., & Sarich, N. (2020). COVID-19 pandemic in the United States. Health Policy and Technology, 9(4), 623–638. https://doi.org/10.1016/j.hlpt.2020.08.007 23. Yasmin, F., Najeeb, H., Moeed, A., Naeem, U., Asghar, M. S., Chughtai, N. U., Yousaf, Z., Seboka, B. T., Ullah, I., Lin, C.-Y., & Pakpour, A. H. (2021). COVID-19 Vaccine Hesitancy in the United States: A Systematic Review. Frontiers in Public Health, 9, 770985. https://doi.org/10.3389/fpubh.2021.770985 24. Khare, S., Gurry, C., Freitas, L., B Schultz, M., Bach, G., Diallo, A., Akite, N., Ho, J., TC Lee, R., Yeo, W., Core Curation Team, G., & Maurer-Stroh, S. (2021). GISAID’s Role in Pandemic Response. China CDC Weekly, 3(49), 1049–1051. https://doi.org/10.46234/ccdcw2021.255 25. Rozewicki, J., Li, S., Amada, K. M., Standley, D. M., & Katoh, K. (2019). MAFFT-DASH: Integrated protein sequence and structural alignment. Nucleic Acids Research, 47(W1), W5–W10. https://doi.org/10.1093/nar/gkz342 26. Aksamentov, I., Roemer, C., Hodcroft, E. B., & Neher, R. A. (2021). Nextclade: Clade assignment, mutation calling and quality control for viral genomes. Journal of Open Source Software, 6(67), 3773. https://doi.org/10.21105/joss.03773 27. Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586–1591. https://doi.org/10.1093/molbev/msm088 28. Zhan, X.-Y., Zhang, Y., Zhou, X., Huang, K., Qian, Y., Leng, Y., Yan, L., Huang, B., & He, Y. (2020). Molecular Evolution of SARS-CoV-2 Structural Genes: Evidence of Positive Selection in Spike Glycoprotein (p. 2020.06.25.170688). https://doi.org/10.1101/2020.06.25.170688 29. Updated Nextstrain SARS-CoV-2 clade naming strategy. (n.d.). Retrieved January 18, 2022, from https://nextstrain.org//blog/2021-01-06-updated-SARS-CoV-2-clade-naming |