|
Bajusz D., R cz A., H berger K. (2015) Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Cheminform; 7:20 Ban š, P., Hollas, D., Zgarbov , M., Jurecka, P., Orozco, M., Cheatham III, T.E., Šponer, J., Otyepka, M. Performance of molecular mechanics force fields for RNA simulations: Stability of UUCG and GNRAhairpins.J. Chem. Theory. Comput.,2010,6, 3836–3849. Bender A, Glen RC: Molecular similarity: a key technique in molecular informatics. Org Biomol Chem.2004; 2(22): 3204–3218. Bhatt, P.R., Scaiola, A., Loughran, G., Leibundgut, M., Kratzel, A. et al. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science 372.6548 (2021): 1306-1313. Brierley-f, I., Jenner, A. J., &Inglis, S. C. (1992). Mutational Analysis of the “Slipperysequence” Component of a Coronavirus Ribosomal Frameshifting Signal, 463–479. 63 Bryant, Andrew MSc1,*; Lawrie, Theresa A. MBBCh, PhD2; Dowswell, Therese PhD2; Fordham, Edmund J. PhD2; Mitchell, Scott MBChB, MRCS3; Hill, Sarah R. PhD1; Tham, Tony C. MD, FRCP4 Ivermectin for Prevention and Treatment of COVID-19 Infection: A Systematic Review, Meta-analysis, and Trial Sequential Analysis to Inform Clinical Guidelines, American Journal of Therapeutics: July/August 2021 - Volume 28 - Issue 4 - p e434-e460 doi: 10.1097/MJT.0000000000001402 Case, D.A., Cheatham III, T.E., Darden, T., Gohlke, H., Luo, R., Merz Jr, K.M., Onufriev, A., Simmerling, C., Wang, B. and Woods, R.J., (2005). The Amber biomolecular simulation programs. Journal of computational chemistry, 26(16), pp.1668-1688. Chang, K.-C., Salawu, E.O., Chang, Y.-Y., Wen, J.-D., Yang, L.-W., 2019. Resolutionexchanged structural modeling and simulations jointly unravel that subunit rolling underlies the mechanism of programmed ribosomal frameshifting. Bioinformatics 35, 945– 952. doi:10.1093/bioinformatics/bty762 Chen G, Chang KY, Chou MY, Bustamante C, Tinoco I, Jr (2009) Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of −1 ribosomal frameshifting. Proc Natl Acad Sci USA 106:12706–12711 Chen, G.; Chang, K. Y.; Chou, M. Y.; Bustamante, C.; Tinoco, I., Jr. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 12706. (b) Hansen, T. M.; Reihani, S. N.; Oddershede, L. B.; S rensen, M. A. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 5830. Christie, B. D., Leland, B. A., Nourse, J. G. Structure Searching in Chemical Databases by Direct Lookup Methods. J. Chem. Inf. Comput. Sci. 1993, 33, 545–547. D.A. Case, H.M. Aktulga, K. Belfon, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E. Cheatham, III, G.A. Cisneros, V.W.D. Cruzeiro, T.A. Darden, R.E. Duke, G. Giambasu, M.K. Gilson, H. Gohlke, A.W. Goetz, R. Harris, S. Izadi, S.A. Izmailov, C. Jin, K. 64 Kasavajhala, M.C. Kaymak, E. King, A. Kovalenko, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, M. Machado, V. Man, M. Manathunga, K.M. Merz, Y. Miao, O. Mikhailovskii, G. Monard, H. Nguyen, K.A. O’Hearn, A. Onufriev, F. Pan, S. Pantano, R. Qi, A. Rahnamoun, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling, N.R. Skrynnikov, J. Smith, J. Swails, R.C. Walker, J. Wang, H. Wei, R.M. Wolf, X. Wu, Y. Xue, D.M. York, S. Zhao, and P.A. Kollman (2021), Amber 2021, University of California, San Francisco. Dinman, J.D.; Wickner, R.B. Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation. J. Virol. 1992, 66, 3669– 3676. Dolinsky, T.J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., & Baker, N. A. (2007). PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic acids research, 35(suppl_2), W522-W525. Dongwan Kim, Joo-Yeon Lee, Jeong-Sun Yang, Jun Won Kim, V. Narry Kim, Hyeshik Chang, The Architecture of SARS-CoV-2 Transcriptome, Cell, Volume 181, Issue 4, 2020, Pages 914-921.e10, ISSN 0092-8674, https://doi.org/10.1016/j.cell.2020.04.011. Durant JL, Leland BA, Henry DR, Nourse JG: Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 2002, 42:1273-1280. Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10:449-61 Green L, Kim CH, Bustamante C, Tinoco I, Jr (2008) Characterization of the mechanical unfolding of RNA pseudoknots. J Mol Biol 375:511–528. Grentzmann, G., Ingram, J.A., Kelly, P.J., Gesteland, R.F., Atkins, J.F., 1998. A dual-luciferase reporter system for studying recoding signals. RNA 4 (4), 479–486. 65 Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996; 14:33-8, 27-8. Irwin, John J, and Brian K Shoichet. “ZINC--a free database of commercially available compounds for virtual screening.” Journal of chemical information and modeling vol. 45,1 (2005): 177-82. doi:10.1021/ci049714+ J. Han, M. Kamber, J. Pei. "2 - Getting to Know Your Data". Data Mining (Third Edition), Editor(s): Jiawei Han, Micheline Kamber, Jian Pei, Morgan Kaufmann, 2012, Pages 39-82. ISBN 9780123814791. https://doi.org/10.1016/B978-0-12-381479-1.00002-2. (https://www.sciencedirect.com/science/article/pii/B9780123814791000022) Jaccard, P.: The distribution of the flora in the alpine zone. New Phytologist 1912, 11(2), 37– 50. doi:10.1111/j.1469-8137. 1912.tb05611.x Jacks, T., Madhani, H.D., Masiraz, F.R., Varmus, H.E., 1988. Signals for ribosomal frameshifting in the Rous Sarcoma Virus gag-pol region. Cell 55, 447–458. Jakalian, A., Jack, D.B., Bayly, C.I., 2002. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry 23, 1623–1641. doi:10.1002/jcc.10128 Johnson M, Maggiora GM: Concepts and applications of molecular similarity. Wiley, 1990. Joung, I.S., & Cheatham III, T. E. (2009). Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters. The Journal of Physical Chemistry B, 113(40), 13279-13290. K.L. Tsai, S.Y. Chang, L.W. Yang (2021). DRDOCK: A Drug Repurposing platform integrating automated docking, simulations and a log-odds-based drug ranking scheme. bioRxiv 2021.01.31.429052; doi: https://doi.org/10.1101/2021.01.31.429052 66 Khailany, R. A., Safdar, M., & Ozaslan, M. (2020). Genomic characterization of a novel SARS-CoV-2. Gene reports, 19, 100682. https://doi.org/10.1016/j.genrep.2020.100682 Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2019 Jan 8;47(D1):D1388-D1395. doi: 10.1093/nar/gkaa971. PMID: 33151290. L. Caly, J. D. Druce, M. G. Catton, D. A. Jans, K. M. Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 178, 104787 (2020). L. Caly, J. D. Durce, M. G. Gatton, D. A. Jans, K. M. Wagstaff, The FDA-approved drugs ivermectin inhibits the replication of SARS-CoV2 in viitro. Antivirals Res. 178, 104787 (2020). Massova, I., Kollman, P.A., 2000. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspectives in Drug Discovery and Design 18, 113–135. doi:10.1023/A:1008763014207 Miller, B.R., Mcgee, T.D., Swails, J.M., Homeyer, N., Gohlke, H., Roitberg, A.E., 2012. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation 8, 3314–3321. doi:10.1021/ct300418h Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; 30:2785-91. Munshi, S.; Neupane, K.; Ileperuma, S.M.; Halma, M.T.J.; Kelly, J.A.; Halpern, C.F.; Dinman, J.D.; Loerch, S.; Woodside, M.T. Identifying Inhibitors of −1 Programmed Ribosomal Frameshifting in a Broad Spectrum of Coronaviruses. Viruses 2022, 14, 177. https://doi.org/10.3390/v14020177 67 Neupane, K.; Munshi, S.; Zhao, M.; Ritchie, D.B.; Ileperuma, S.M.; Woodside, M.T. Antiframeshifting ligand active against SARS coronavirus-2 is resistant to natural mutations of the frameshift-stimulatory pseudoknot. J. Mol. Biol. 2020, 432, 5843–5847 Park, S.-J.; Kim, Y.-G.; Park, H.-J. Identification of RNA pseudoknot-binding ligand that inhibits the −1 ribosomal frameshifting of SARS-coronavirus by structure-based virtual screening. J. Am. Chem. Soc. 2011, 133, 10094–10100. Plant, E. P., Rakauskaite, R., Taylor, D. R., Dinman, J. D. Achieving a golden mean: Mechanisms by which corona viruses ensure synthesis of the correct stoichiometric ratios of viral proteins. J. Virol. 2010, 84, 4330–4340. Plant, E.P., Dinman, J.D., 2005. Torsional restraint: a new twist on frameshifting pseudoknots. Nucleic Acids Res. 33, 1825–1833. https://doi.org/10.1093/nar/gki329. Qu X, et al. (2011) The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475:118–121. Ritchie, D.B.; Foster, D.A.; Woodside, M.T. Programmed −1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding. Proc. Natl. Acad. Sci. USA 2012, 109, 16167–16172 Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50, 742−754. Somogyi, P., Jenner, A.J., Brierley, I.A., Inglis, S.C., 1993. Ribosomal pausing during translation of an RNA pseudoknot. Mol. Cell Biol. 13, 6931–6940. Sun, Y.; Abriola, L.; Niederer, R.O.; Pedersen, S.F.; Alfajaro, M.M.; Monteiro, V.S.; Wilen, C.B.; Ho, Y.-C.; Gilbert, W.V.; Surovtseva, Y.V.; et al. Restriction of SARS-CoV-2 replication by targeting programmed −1 ribosomal frameshifting. Proc. Natl. Acad. Sci. USA 2021, 118, e2023051118. 68 Tanimoto, T.: An elementary mathematical theory of classification and prediction. Technical report, International Business Machines Corporation, New York (1958). Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors, Wiley-VCH: Weinheim, Germany, 2000. Trott, O., Olson, A.J., 2009. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. doi:10.1002/jcc.21334 Wang, J., Wang, W., Kollman, P.A., Case, D.A., 2006. Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling 25, 247–260. doi:10.1016/j.jmgm.2005.12.005 Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A., 2004. Development and testing of a general amber force field. Journal of Computational Chemistry 25, 1157–1174. Wen JD, et al. (2008) Following translation by single ribosomes one codon at a time. Nature 452:598–603. Wen,J.D., Lancaster,L., Hodges,C., Zeri,A.C., Yoshimura,S.H., Noller,H.F., Bustamante,C. and Tinoco,I. Jr (2008) Following translation by single ribosomes one codon at a time. Nature, 452, 598–603 Wen,J.D., Manosas,M., Li,P.T., Smith,S.B., Bustamante,C., Ritort,F. and Tinoco,I. Jr (2007) Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results. Biophys. J., 92, 2996–3009. White KH, Orzechowski M, Fourmy D, Visscher K (2011) Mechanical unfolding of the beet western yellow virus −1 frameshift signal. J Am Chem Soc 133:9775–9782. 69 Wu, Y. J., Wu, C. H., Yeh, A. Y., & Wen, J. D. (2014). Folding a stable RNA pseudoknot through rearrangement of two hairpin structures. Nucleic acids research, 42(7), 4505–4515. https://doi.org/10.1093/nar/gkt1396 Xue L, Bajorath J. Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Comb Chem High Throughput Screen. 2000 Oct;3(5):363-72. doi: 10.2174/1386207003331454. PMID: 11032954. |