帳號:guest(3.144.248.178)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王沁婕
作者(外文):Wang, Chin-Chieh
論文名稱(中文):恐懼的總和:投資者情緒與台灣股市的影響
論文名稱(外文):The Sum of All Fears:The Impact of Taiwan's Stock Market on Investor Sentiment
指導教授(中文):黃裕烈
指導教授(外文):Huang, Yu-Lieh
口試委員(中文):徐之強
徐士勛
吳俊毅
學位類別:碩士
校院名稱:國立清華大學
系所名稱:財務金融碩士在職專班
學號:108079526
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:26
中文關鍵詞:文字探勘經濟政策不確定性Google 搜尋量恐慌指數
外文關鍵詞:EPUSVIText MiningVIX
相關次數:
  • 推薦推薦:0
  • 點閱點閱:63
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
臆測投資市場變化一直是投資者最感興趣的議題,而過往文獻常見探討投資者情緒、新聞文字以及經濟政策不確定性對市場的影響效果。有別於過去的研究,本研究透過文字探勘方式整理出影響台灣股市的四個恐懼指標,並且透過 Diebold and Yilmaz (2014) 的關聯性分析,發現這四個恐懼指標彼此之間都有無法被替代的資訊內涵,因此必需同時考量所有情況才能真實反應市場與投資人的情緒。透過迴歸分析我們發現,若同時考量這四個恐懼指標,只有少數情況,恐懼指標對股市重要變數有顯著的預測能力;這結果與即有文獻相左。但相反地,若個別考量單一指標對市場變數的影響效果時,則大多數的指標都有顯著的預測能力。上述這些結果顯示,唯有綜合考量不同面向的恐懼指標才能較充分地反應投資者的情緒,也才能有較正確且全面的實證結果。若只考量單一指標的影響效果,其實證分析恐會有所偏誤。
In this study, we construct four different indicators which reflect the investors’ sentiment about fears and examine the impact of these indicators on the Taiwan’s stock market. According to the connectedness analysis of Diebold and Yilmaz (2014), we found that these indicators have irreplaceable information among each other. Therefore, it is necessary to consider all indicators to reflect the market and investors’ sentiment. Based on the regression analysis, we also found that, when all indicators are taken into account, only a few indicators have significant predictive power in Taiwan’s stock market. This is in contrast to the result in the existing literature. We, therefore, suggest that considering single indicator in the regression analysis may lead to a bias empirical result.
1. 前言………………………………………………………………1
2. 文獻回顧……………………………………………………3
2.1. TwFEARS 指標…………………………………………3
2.2. TwSVI 指標………………………………………………4
2.3. TwEPU 指標………………………………………………5
2.4. TwVIX 指標………………………………………………5
3. 研究方法……………………………………………………5
3.1. 資料處理……………………………………………………6
3.2. 單根檢定……………………………………………………9
3.3. 關聯性分析……………………………………………10
3.4. 迴歸分析…………………………………………………11
4. 實證結果…………………………………………………11
5. 結論………………………………………………………………23
參考文獻………………………………………………………………24
1. 李建興,黃玉珂與林依潔 (2015),「VIX 指數作為擇時指標之探討-以台灣與中國股票市場為例」,《兩岸金融季刊》,3,1-25。
2. 黃裕烈與管中閔 (2018),「美國聯準會會議紀要的文字探勘與臺灣經濟變數預測」,《經濟論文叢刊》,47,363-391。
3. 黃裕烈,葉錦徽與陳重吉 (2021),「台灣經濟政策不確定性指標之建構與分析」,《經濟論文叢刊》,即將發表。
4. Antweiler, W., and M. Z. Frank (2004). “Is All that Talk just Noise? The Information Content of Internet Stock Message Boards,” Journal of Finance, 59, 1259-94.
5. Black, F. (1986). “Noise,” Journal of Finance, 41, 529-543.
6. Bank, M., Larch, M. and Peter, G. (2011). “Google Search Volume and Its Influence on Liquidity and Returns of German Stocks,” Financial Markets and Portfolio Management, 25, 239-264.
7. Baker, Scott R, Bloom Nicholas and Davis, Steven J. (2014). “Guide for Human Audit of Newspaper-Based Index of Economic Policy Uncertainty,” Working Paper.
8. Baker, Scott R, Bloom Nicholas, Canes-Wrone, Brandice, Steven J. Davis, and Rodden, Jonathan (2014). “Why has US Policy Uncertainty Risen since 1960?” American Economic Review, 104, 56-60.
9. Baker, Scott R, Bloom Nicholas, and Steven J. Davis (2016). “Measuring Economic Policy Uncertainty,” The Quarterly Journal of Economics, 131, 1593-1636.
10. Dickens, C. (1859). “A Tale of Two Cities,” All the Year Round, Apr-Nov.
11. Dickey, D. A. and W. A. Fuller (1981). “Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root,” Econometrica, 49, 1057-1072.
12. Diebold F. X., and K. Yilmaz (2009). “Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets,” The Economic Journal, 119, 158-171.
13. Diebold F. X., and K. Yilmaz (2012). “Better to Give than to Receive: Predictive Directional Measurement of Volatility Spillovers,” International Journal of Forecasting, 28, 57-66.
14. Diebold F. X., and K. Yilmaz, (2014). “On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms,” Journal of Econometrics, 182, 119-134.
15. Da Z., Engelberg J. and Gao P. (2014). “The Sum of All FEARS Investor Sentiment and Asset Prices,” The Review Financial Studies, 28, 1-32.
16. Giot, P. (2002). “Implied Volatility Indices as Leading Indicators of Stock Index Returns?” Working Paper, CORE, University of Leuvain.
17. Singer, E. (2002). “The use of incentives to reduce nonresponse in household surveys,” Survey Methodology Program, University of Michigan.
18. Simon, D. P. (2003). “The Nasdaq Volatility Index During and After the Bubble,” Journal of Derivatives, 11, 9-24.
19. Skiadopoulos, G. and G. Konstantinidi (2011). “Are VIX Futures Prices Predictable? An Empirical Investigation,” International Journal of Forecasting, 27, 543-560.
20. Sarwar, G. (2012) “Is VIX an investor fear gauge in BRIC equity markets?” Journal of Multinational Financial Management, 22, 55-65.
21. Tetlock, P. C. (2007). “Giving Content to Investor Sentiment: The Role of Media in the Stock Market,” Journal of Finance, 62, 1139-1168.
22. Treadway, P. T. and M. C. S. Wong (2013). Investing in the Age of Sovereign Defaults: How to Preserve your Wealth in the Coming Crisis, New Jersey: Wiley.
23. Whaley, R. E. (1993). “Derivatives on Market Volatility: Hedging Tools Long Overdue,” Journal of Derivatives, 1, 71-84.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *