帳號:guest(3.145.84.203)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱于仙
作者(外文):Chiu, Yu-Hsien
論文名稱(中文):定位行動行銷廣告下的消費者隱私疑慮-基於保護動機理論觀點
論文名稱(外文):Surprised me or scared me? Customers’ privacy concerns over mobile location-based advertising: A protection motivation perspective
指導教授(中文):王俊程
指導教授(外文):Wang, Jyun-Cheng
口試委員(中文):王貞雅
唐運佳
口試委員(外文):Wang, Chen-Ya
Tang, Yun-Jia
學位類別:碩士
校院名稱:國立清華大學
系所名稱:服務科學研究所
學號:108078507
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:39
中文關鍵詞:隱私疑慮適地性行動廣告保護動機理論
外文關鍵詞:privacy concernsmobile location-based advertisingprotection motivation theory
相關次數:
  • 推薦推薦:0
  • 點閱點閱:75
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
手機定位廣告(MLBA)已成為市場上普遍的行銷手法,然而過程因涉及到追蹤個人
位置訊息,引起許多用戶隱私疑慮。過去文獻主要著重在研究不同手機定位廣告的策略差異,並發現推式策略(Push)因缺乏事先徵求用戶同意,更會產生用戶隱私疑慮並降低其對於手機定位廣告的接受度;而通常礙於成本考量,拉式手機定位廣告鮮少應用於市場上。因此,我們認為在顧客收到推式手機定位廣告的過程中,將會引發威脅評估和自我保護動機。以保護動機理論為架構,我們假設廣告來源透明度和金錢獎勵可以作為適應性獎勵,竟而影響用戶隱私疑慮。本研究旨在推式手機定位廣告背景下,通過 3 × 2 組間實驗設計法,探討使用者對於廣告來源透明度之不同程度(無/低/高)與金錢獎勵(無/有)對於用戶隱私疑慮的影響以及後續對於手機定位廣告的接受度、購買意願。研究結果顯示在推式策略的情況下,廣告來源透明度對提升用戶之手機定位廣告的接受度具有直接效果,並發現金錢獎勵除了可以調節用戶隱私疑慮對手機定位廣告的接受度以及購買意願。
Mobile location-based advertising (MLBA) which has become a common practice in the marketplace. However, MLBA also brings about customers' privacy concerns because it tracks personal location. Previous studies have focused on the difference of MLBA approaches and found it push MLBA can increase more privacy concerns and hinder their adoption than pull MLBA. Moreover, the pull MLBA (with an explicit request) is rare in authentic marketplaces due to the expansive costs. We argued that when customers read personalized ads from push MLBA derive threat appraisal and self-protection motivation. Enlightened from the protection motivation theory, we assumed that ad source transparency and monetary rewards might serve as maladaptive rewards to diminish potential threats of push MLBA. This study investigates the effect of ad source transparency, monetary rewards on customers' privacy concerns and how it will affect their acceptance toward MLBA and purchasing intention afterward in the context of push MLBA. Using 3 (user perceived transparency level: none/low/high) by 2 (monetary rewards: none/with promotion) between-subjects design, this study aims to conduct six video-based scenario experiments to examine the underlying mechanisms. By using analysis of variance (ANOVA) and multiple linear regression for data analysis, the result of this study shows ad source transparency can increase MLBA acceptance; Monetary rewards not only can moderate user's privacy concerns toward MLBA acceptance but increase purchasing intention.
TABLE OF CONTENT
ABSTRACT---------------------------------------------------------i
1. INTRODUCTION--------------------------------------------------1
2. LITERATURE REVIEW AND HYPOTHESIS------------------------------5
2.1 Protection Motivation Theory---------------------------------6
2.2 Understanding User’s Privacy Concern for MLBA----------------8
2.3.1 Maladaptive Rewards----------------------------------------10
2.3.2 Intrinsic Rewards: Perceived Ad Transparency---------------11
2.3.3 Different Positioning Technologies as Ad Transparency------13
2.3.4 Extrinsic Rewards: Monetary Rewards------------------------15
3. METHODOLDY----------------------------------------------------17
3.1 Scale Instrument---------------------------------------------17
3.2 Experiment Design--------------------------------------------20
3.3 Participants-------------------------------------------------21
3.4 Procedure and Task-------------------------------------------22
4. DATA ANALYSIS AND RESULTS-------------------------------------23
5. DISCUSSION AND CONCLUSION-------------------------------------28
5.1 Theoretical and Managerial Implications----------------------30
5.2 Limitations--------------------------------------------------31
5.3 Conclusion---------------------------------------------------32
REFERENCES-------------------------------------------------------33
APPENDIX A. SURVEY INSTRUMENT------------------------------------37
APPENDIX B. SCENEARIO-BASED VIDEO LINK---------------------------39
Andreou, A., Venkatadri, G., Goga, O., Gummadi, K., Loiseau, P., & Mislove, A. (2018, February). Investigating ad transparency mechanisms in social media: A case study of Facebook's explanations. In NDSS 2018-Network and Distributed System Security Symposium (pp. 1-15).

Bruner, G. C., & Kumar, A. (2007). Attitude toward location-based advertising. Journal of interactive advertising, 7(2), 3-15.

Barth, S., & De Jong, M. D. (2017). The privacy paradox–Investigating discrepancies between expressed privacy concerns and actual online behavior–A systematic literature review. Telematics and informatics, 34(7), 1038-1058.

Beatrix Cleff, E. (2007). Privacy issues in mobile advertising. International Review of Law Computers and Technology, 21(3), 225-236.

Bruner, G. C., & Kumar, A. (2007). Attitude toward location-based advertising. Journal of interactive advertising, 7(2), 3-15.

Chenoweth, T., Minch, R., & Gattiker, T. (2009, January). Application of protection motivation theory to adoption of protective technologies. In 2009 42nd Hawaii International Conference on System Sciences (pp. 1-10). IEEE.

Culnan, M. J., & Bies, R. J. (2003). Consumer privacy: Balancing economic and justice considerations. Journal of social issues, 59(2), 323-342.

Dhar, S., & Varshney, U. (2011). Challenges and business models for mobile location-based services and advertising. Communications of the ACM, 54(5), 121-128.

Earp, J. B., Antón, A. I., Aiman-Smith, L., & Stufflebeam, W. H. (2005). Examining Internet privacy policies within the context of user privacy values. IEEE Transactions on Engineering Management, 52(2), 227-237.

eMarketer (2016). Global Digital Ad Spending Update Q2 2020. Available from: http://www.emarketer.com/Article/Mobile-Ad-Spend-Top 100-Billion-Worldwide-2016-51-of-Digital Market/1012299#sthash.PYxsJ9gB.dpuf accessed 31/5/18 .

E.P. Pedersen, Adoption of mobile internet services: an exploratory study of mobile commerce early adopters, Journal of Organizational Computing and Electronic Commerce 15 (2) (2005).

Fodor, M., & Brem, A. (2015). Do privacy concerns matter for Millennials? Results from an empirical analysis of Location-Based Services adoption in Germany. Computers in Human Behavior, 53, 344-353.

Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics.

Gutierrez, A., O'Leary, S., Rana, N. P., Dwivedi, Y. K., & Calle, T. (2019). Using privacy calculus theory to explore entrepreneurial directions in mobile location-based advertising: Identifying intrusiveness as the critical risk factor. Computers in Human Behavior, 95, 295-306.

Gilliland, S. W. (1993). The perceived fairness of selection systems: An organizational justice perspective. Academy of management review, 18(4), 694-734.

Greiff, Felicia (2016), “FTC to Ad Tech Industry: More Transparency, User Control over Data Necessary,” http://www.mediapost.com/publications/article/267211/ftc-to-ad-tech-industry-more-transparency-user-c.html.

Hassandoust, Farkhondeh and Techatassanasoontorn, Angsana, "Understanding Users’ Information Security Awareness and Intentions: A full Nomology of Protection Motivation Theory" (2018). PACIS 2018 Proceedings. 93.

Hui, K. L., Teo, H. H., & Lee, S. Y. T. (2007). The value of privacy assurance: An exploratory field experiment. Mis Quarterly, 19-33.
Hong, W., & Thong, J. Y. (2013). Internet privacy concerns: An integrated conceptualization and four empirical studies. Mis Quarterly, 275-298.

IABUK (2017). Internet Advertising Bureau UK: Mobile drives digital ad spend past £10 billion threshold. Available from: https://www.iabuk.com/press-release/mobile-drivesdigital-ad-spend-past-ps10-billion-threshold accessed 31/5/18

Junglas, I. A., Johnson, N. A., & Spitzmüller, C. (2008). Personality traits and concern for privacy: an empirical study in the context of location-based services. European Journal of Information Systems, 17(4), 387-402.

Kim, T., Barasz, K., & John, L. K. (2019). Why am I seeing this ad? The effect of ad transparency on ad effectiveness. Journal of Consumer Research, 45(5), 906-932.

Krishen, A. S., Raschke, R. L., Close, A. G., & Kachroo, P. (2017). A power-responsibility equilibrium framework for fairness: Understanding consumers' implicit privacy concerns for location-based services. Journal of Business Research, 73, 20-29.

LaRose, R., & Rifon, N. J. (2007). Promoting i‐safety: effects of privacy warnings and privacy seals on risk assessment and online privacy behavior. Journal of Consumer Affairs, 41(1), 127-149.

Learmonth, Michael (2009), “Sensing Coming Regulation, Online Ad Groups Unite,” http://adage.com/article/digital/online-adgroups-fight-regulation-behavioral-targeting/133730/

Lee, D., Larose, R., & Rifon, N. (2008). Keeping our network safe: a model of online protection behaviour. Behaviour & Information Technology, 27(5), 445-454.

Lee, H., Park, H., & Kim, J. (2013). Why do people share their context information on Social Network Services? A qualitative study and an experimental study on users' behavior of balancing perceived benefit and risk. International Journal of Human-Computer Studies, 71(9), 862-877.

Lee, J. M., & Rha, J. Y. (2016). Personalization–privacy paradox and consumer conflict with the use of location-based mobile commerce. Computers in Human Behavior, 63, 453-462.

Limpf, N., & Voorveld, H. A. (2015). Mobile location-based advertising: How information privacy concerns influence consumers' attitude and acceptance. Journal of Interactive Advertising, 15(2), 111-123.

Maddux, J. E., & Rogers, R. W. (1983). Protection motivation and self-efficacy: A revised theory of fear appeals and attitude change. Journal of experimental social psychology, 19(5), 469-479.

Malhotra, N. K., Kim, S. S., & Agarwal, J. (2004). Internet users' information privacy concerns (IUIPC): The construct, the scale, and a causal model. Information systems research, 15(4), 336-355.

Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of management review, 20(3), 709-734.

McHugh, M. L. (2011). Multiple comparison analysis testing in ANOVA. Biochemia medica, 21(3), 203-209.

Morey, T., Forbath, T., & Schoop, A. (2015). Customer data: Designing for transparency and trust. Harvard Business Review, 93(5), 96-105.

Okazaki, S., Li, H., & Hirose, M. (2009). Consumer privacy concerns and preference for degree of regulatory control. Journal of advertising, 38(4), 63-77.

Paavilainen, Jouni (2002), Mobile Business Strategies, London, Great Britain, IT Press.

Pederson (2005), An Exploratory study of mobile commerce service adoption, Journal of Organizational Computing and Electronic Commerce, 15(2), 203-222.

Putrevu, S., & Lord, K. R. (1994). Comparative and noncomparative advertising: Attitudinal effects under cognitive and affective involvement conditions. Journal of Advertising, 23(2), 77-91.

Rogers, R. W. A protection motivation theory of fear appeals and attitude change. Journal of Psychology, 1975. 91, 93-114.

Rogers, R. W., & Prentice-Dunn, S. (1997). Protection motivation theory.

Sheng, Hong, Fiona F. Nah, and Keng Siau (2008), “An Experimental Study on U-Commerce Adoption: The Impact of Personalization and Privacy Concerns,” Journal of the Association for Information Systems, 9 (6), 344–76.

Smit, E. G., Van Noort, G., & Voorveld, H. A. (2014). Understanding online behavioural advertising: User knowledge, privacy concerns and online coping behaviour in Europe. Computers in Human Behavior, 32, 15-22.

S. Putrevu, R.K. Lord, Comparative and noncomparative advertising: attitude effects under cognitive and affective involvement conditions, Journal of Advertising Research, 23 (1994) 77–90.

Statista Research Department. Internet usage in India- Statistics & Facts. Available from: https://www.statista.com/topics/2157/internet-usage-in-india/. Last updated May 08, 2020; cited May 27, 2020.

Smith, H. J., S. J. Milberg, S. J. Burke. 1996. Information privacy: Measuring individuals’ concerns about organizational practices. MIS Quarterly. 20(2) 167–196.

Stewart, K. A., & Segars, A. H. (2002). An empirical examination of the concern for information privacy instrument. Information systems research, 13(1), 36-49.

Taylor, Shirley, and Peter A. Todd (1995), “Understanding Information Technology Usage: A Test of Competing Models,” Information Systems Research, 6 (2), 144–76.

Unni, R., & Harmon, R. (2007). Perceived effectiveness of push vs. pull mobile location based advertising. Journal of Interactive advertising, 7(2), 28-40.

Vatanparast, R., & Asil, M. (2007). Factors affecting the use of mobile advertising. International Journal of Mobile Marketing, 2(2).

Wang, J. L., & Loui, M. C. (2009, May). Privacy and ethical issues in location-based tracking systems. In 2009 IEEE International Symposium on Technology and Society (pp. 1-4). IEEE.

Westin, A. F. (1967). Special report: legal safeguards to insure privacy in a computer society. Communications of the ACM, 10(9), 533-537.

White, P. (2004, October). Privacy and security issues in teleradiology. In Seminars in Ultrasound, CT and MRI (Vol. 25, No. 5, pp. 391-395). WB Saunders.

Wu, J. H., & Wang, S. C. (2005). What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. Information & management, 42(5), 719-729.

Xu, H., Luo, X. R., Carroll, J. M., & Rosson, M. B. (2011). The personalization privacy paradox: An exploratory study of decision making process for location-aware marketing. Decision support systems, 51(1), 42-52.

Zhu, H., Ou, C. X. J., van den Heuvel, W., & Liu, H. (2017). Privacy calculus and its utility for personalization services in e-commerce: An analysis of consumer decision making. Information & Management, 54, 427–437.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *