帳號:guest(18.225.234.108)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):沈彥華
作者(外文):Shen, Yen-Hua.
論文名稱(中文):含溴之鈣鈦礦太陽能電池製作以及與矽晶太陽能電池作為二接點串聯電池之研究
論文名稱(外文):Bromine-Doped Perovskite Solar Cell and Stacking on Silicon Crystalline Solar Cell as Two-Terminal Tandem Device
指導教授(中文):王立康
指導教授(外文):Wang, Li-Karn
口試委員(中文):李明昌
陳昇暉
口試委員(外文):Li, Ming-Chang
Chen, Sheng-Hui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:108066540
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:69
中文關鍵詞:鈣鈦礦矽晶太陽能電池
外文關鍵詞:PerovskiteSiliconsolar cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:322
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文第一部分主要研究摻雜溴之鈣鈦礦太陽能電池的製備及優化,鈣鈦礦吸收層使用低成本的一步法溶液塗佈來進行製程,比較不同碘溴比例的鈣鈦礦太陽能電池其中的吸收特性與電性的差異,得到最佳化的比例為MAPb(I0.8Br0.2)3,再進一步配置不同吸收層濃度使厚度改變以增加光的吸收;以及優化電洞傳輸層NiOx退火溫度與濃度等參數,最後調整電子傳輸層PCBM的厚度使電池效率達到最佳化。
第二部分為使用離子佈植法進行雜質擴散和快速熱退火來製作矽晶太陽能電池,背面為電子束蒸鍍全面鋁作為電極,再將已經製備好的高能隙鈣鈦礦太陽能電池直接塗佈於已拋光的矽晶正面進行堆疊,最後熱蒸鍍銀電極後完成串聯電池並進行優劣分析。
The first part of this thesis mainly discusses the preparation and optimization of bromine-doped perovskite solar cells. To deposit the absorption layer , we use a low-cost one-step solution coating process and compare the absorption spectrum and electrical characteristics of perovskite solar cells with different iodide-to-bromine ratios. The chemical formula with an optimized ratio is found to be MAPb(I0.8Br0.2)3, and then we further make different absorption layer concentrations to change the thickness of the perovskite to increase light harvest;and then optimize the hole transport layer NiOx parameters of annealing temperature and concentration. Finally, we adjust the thickness of the electron transport layer PCBM to optimize the cell’s efficiency.

The second part is to use an ion implantation method for impurity diffusion , and then rapid thermal annealing to make silicon crystalline solar cells. The back of Si is all surface Al deposited by electron beam evaporation to be the electrode. Then the prepared high band gap perovskite solar cell is directly coated on the front side of the silicon crystalline solar cell, and the silver electrode is thermally evaporated to complete the tandem cell.
摘要 iv
Abstract v
目錄 vii
圖目錄 x
第一章 序論 1
1.1研究背景 1
1.1.1 前言 1
1.1.2 太陽能電池發展 2
1.2文獻回顧 6
1.2.1 鈣鈦礦簡介 6
1.2.2 初代鈣鈦礦太陽能電池 7
1.2.3 鈣鈦礦太陽能電池發展 8
1.2.4 矽晶與鈣鈦礦串聯型太陽能電池 13
1.3 研究目的 15
1.4 論文架構 16
第二章 實驗原理 17
2.1太陽能電池基本介紹 17
2.1.1 太陽光譜 17
2.1.2 太陽能電池操作理論 18
2.1.3 理想太陽能電池等效電路 19
2.1.4 實際太陽能電池等效電路 20
2.1.5 太陽能電池參數特性 21
2.2 太陽能電池材料 22
2.2.1 主動層材料 22
2.2.2 電洞傳輸層材料 23
2.2.3 電子傳輸層材料 23
2.2.4 陽極及陰極材料 23
第三章 實驗流程與方法 24
3.1 材料及藥品 24
3.2 量測儀器 25
3.3 鈣鈦礦太陽能電池元件製作流程 29
3.3.1 ITO玻璃基板清洗 30
3.3.2電洞傳輸層成膜 30
3.3.3主動層成膜 31
3.3.4電子傳輸層成膜 32
3.3.5電極蒸鍍 33
3.4 矽晶太陽能電池元件製作流程 34
3.4.1 矽晶片RCA標準清洗 35
3.4.2 沉積二氧化矽保護層 36
3.4.3 中電流離子佈植 36
3.4.4 快速熱退火 37
3.4.5 背面蒸鍍全面鋁電極與燒結 37
3.4.6 正面濺鍍ITO作為穿隧層 37
第四章 實驗結果與討論 39
4.1 NiOx電洞傳輸層分析 39
4.2鈣鈦礦吸收層分析 42
4.2.1 不同吸收層比例之影響 42
4.2.2 不同濃度吸收層之影響 45
4.2.3 不同吸收層比例SEM、EDS及XRD分析 47
4.3 PCBM電子傳輸層分析 52
4.4優化後含溴鈣鈦礦太陽能電池EQE結果 56
4.5中電流離子佈植之矽晶太陽能電池製作 57
4.6 鈣鈦礦串聯矽晶之太陽能電池 57
第五章 結論與未來展望 62
參考文獻 64
[1] O. W. K. Avellino, F. Mwarania, and A. H. A. Wahab, “Uganda solar energy utilization : current status and future trends,” International Journal of Scientific and Research Publications, vol 8, issue 3, March 2018.
[2] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” Journal of Applied Physics, vol 25, pp. 676-677, Jan, 1954.
[3] K. Yoshikawa and H. Kawasaki, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, ” Nature energy 2, 17032, 2017. https://doi.org/10.1038/nenergy.2017.32
[4] O. Schultzy, S. W. Glunz, and G. P. Willeke, “Multicrystalline silicon solar cells exceeding 20% efficiency, ” Fraunhofer institute for solar energy systems, D-79110 Freiburg, Germany
[5] T. Kumagai and H. Matsubara, “Thin‐film microcrystalline silicon solar cells: 11.9% efficiency and beyond,” Applied Physics Express, vol 11, 2018.
[6] Wikipedia: Schematic of allotropic forms of silicon: monocrystalline, polycrystalline, and amorphous silicon.
https://en.wikipedia.org/wiki/Amorphous_silicon
[7] NREL, “Best research-cell efficiencies”, NREL, Sep. 2020, Available: https://www.nrel.gov/pv/cell-efficiency.html
[8] 交大光電-盧廷昌老師個人實驗室-鈣鈦礦雷射
[9] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka,” Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” JACS communication, vol 17, pp. 6050-6051, April, 2009.
[10] H.S. Kim, C. R. Lee, and J.Hyeok,” Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%,” Scientific reporet, vol 2, pp. 591, August, 2012.
[11] Spiro-OMeTAD圖片, enabling materials science, https://www.ossila.com/products/spiro-ometad
[12] D. Liu and T. Kelly,” Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques” Nature Photon, vol 8, pp. 133–138, 2014.
[13] J. Han and H. Kwon,” Interfacial engineering of a ZnO electron transporting layer using self assembled monolayers for high performance and stable perovskite solar cell,” Journal of Materials Chemistry, vol 8, pp. 2105, December, 2019.
[14] F. Guo,” High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes,” Nanoscale, vol 7, pp. 1642-1649, 2015.
[15] M. Liu and Z. Chen,” Reduced open-circuit voltage loss for highly efficient low-bandgap perovskite solar cells via suppression of silver diffusion,” Joural Materials Chemistry, vol 7, pp. 17324-17333, June, 2019.
[16] K. A. Bush and C. D. Bailie,” Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode,” Advanced Materials, adv. Mater, vol 28, pp. 3937–3943, 2016.
[17] M. Najafi and V. Zardetto,” Highly Efficient and Stable Semi-Transparent p-i-n Planar Perovskite Solar Cells by Atmospheric Pressure Spatial Atomic Layer Deposited ZnO,”Solar energy, vol 2, issue 10, 2018.
[18] PCBM圖片, C. M. Bjorstrom, Phys. Condensed Matter, vol 17, L529, 2005.
[19] The principles and applications of atomic layer deposition, 科儀新知第二十九卷第一期 96.8.
[20] H. Zhang and J. Cheng,“ Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility,” ACS Nano, vol 1, pp. 1503-1511, 2016.
[21] A. A. Mamun and T. T. Ava,” Effect of hot-casted NiO hole transport layer on the performance ofperovskite solar cells,” Solar Energy vol 188, pp. 609-618, 2019.
[22] L. Xu and X. Chen,” Inverted perovskite solar cells employing doped NiO hole transport layers: A review,” Nano Energy vol 63, pp.2211-2855, September, 2019.
[23] C.Bi,” Low-Temperature Fabrication of Efficient Wide-Bandgap,” adv. Energy Mater, vol 5, pp. 140-161, 2015.
[24] H. Mehdi,” MAPbBr3 perovskite solar cells via a two-step deposition process,” RSC Adv, vol 9, pp. 12906-12912, 2019.
[25] Y. Zhao,” Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition,” J. Am. Chem. Soc. vol 35, pp. 12241–12244, 2014.
[26] Jeon, N, Noh, J, and Yang, W, Compositional engineering of perovskite materials for high-performance solar cells. Nature, vol 517, pp. 476–480 ,2015.

[27] N. Pellet,” Mixed-organic-cation perovskite photovoltaics for enhanced solarlight harvesting,” Angew Chem, vol 53, pp. 3151–3157, 2014 .
[28] G.Xing,” Long-range balanced electron and hole-transport lengths in organicinorganic CH3NH3PbI3,” Science, vol 342, pp. 344–347, 2013.
[29] XRD原理 國家教育研究院https://terms.naer.edu.tw/detail/1321017/
[30] C. C. Stoumpos,” Semiconducting tin and lead iodide perovskites with organic cations: phase transition, high mobilities, and near-infrared photoluminescent properties,” Chem , vol 52, pp. 9019−9038, 2013.
[31] SEM原理 維基百科https://zh.wikipedia.org/wiki/%E6%89%AB%E6%8F%8F%E7%94%B5%E5%AD%90%E6%98%BE%E5%BE%AE%E9%95%9C
[32] K. Yoshikawa and W. Yoshida,” Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Energy Mater. sol. cells vol 173, pp. 37-42, 2017.
[33] A. Richter and M. Hermle,” Crystalline silicon solar cells reassessment of the limiting efficiency for crystalline silicon solar cells,” IEEE J. Photovolt pp. 1184-1191, 2013.
[34] K. T. VanSant,” III-V-on-si tandem solar cells,” Joule, vol 5, issue 3, pp. 514-518, 17 March 2021.
[35] L. L. Yan,” A review on the crystalline silicon bottom cell for monolithic perovskite/silicon tandem solar cells,” Materials Today Nano, vol 7, pp.45-100, August 2019.
[36] J. P. Mailoa, C.D. Bailie,” A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction,” Appl. Phys. Lett. vol 106, pp. 1477, 2015.
[37] PECVD原理 維基百科
https://en.wikipedia.org/wiki/Plasma-enhanced_chemical_vapor_deposition
[38] S. Albrecht,” Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy Environ. sci., vol 9, pp. 81-88, 2016.
[39] B. Kevin, “ 23.6% - Efficient monolithic perovskite/silicon tandem solar cells with improved stability.” Nature Energy 2, vol 4, pp.170-179, February, 2017.
[40] Sputter 原理 維基百科https://zh.wikipedia.org/wiki/%E6%BA%85%E5%B0%84
[41] J. W. Lee,” Formamidinium and cesium hybridization for photo- and moisture-stable 16 perovskite solar cell,” Adv. Energy Mater. vol 5, pp.1–9, 2015.
[42] C. Yi,” Entropic stabilization of mixed A-cation ABX 3 metal halide perovskites for high performance perovskite solar cells,” Energy Enviro, vol 9, pp.656–662, 2016.
[43] Sunsine spectrum, Wikipedia https://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E5%85%89,
[44] 阜拓科技 太陽光模擬器圖片
http://www.forter.com.tw/products_detail.asp?seq=2295
[45] 日間新聞 PN接面二極體圖片
https://www.daytime.cool/tech/3464584.html
[46] 掃描式電子顯微鏡圖片
https://www.researchgate.net/figure/SEM-device-Hitachi-S4000-
35_fig7_266784283
[47] X-ray繞射儀圖片
https://www.labcompare.com/178-X-Ray-Diffractometer-XRD-
Instruments/42678-X-Pert-3-MRD-XL-Materials-Research-Diffraction-
System/
[48]紫外可見光譜儀圖片
https://www.labx.com/item/perkin-elmer-lambda-35-uv-visible-
spectrometer/4259045
(此全文20261024後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *