|
[1]S. Mack, “Silicon surface passivation by thin thermal oxide/PECVD layer stack systems”, IEEE Journal of Photovoltaics, vol. 1, no. 2, pp. 135-145, 2011. [2]F. Bellenger, “Passivation of Ge ( 100 ) ∕ GeO2 ∕ high-κ gate stacks using thermal oxide treatments”, Journal of the Electrochemical Society , vol. 155, no. 2, pp.33~38, 2008. [3]P. Saint-Cast, “High-efficiency c-Si solar cells passivated with ALD and PECVD aluminum oxide”, IEEE Electron Device Letters, vol. 31, no. 7, pp. 695-697, 2010. [4]S. Zhao, Q. Qiao, S. Zhang, J. Ji, Z. Shi, and G. Li, “Rear passivation of commercial multi-crystalline PERC solar cell by PECVD Al2O3”, Applied Surface Science, vol. 290, no. 0169-4332, pp. 66-70,2014. [5]M. Y. Seo, E. N. Cho, C. E. Kim, P. Moon, and I. Yun, “Characterization of Al2O3 films grown by electron beam evaporator on Si substrates”, 2010 3rd International Nanoelectronics Conference (INEC), pp. 238-239, 2010. [6]P. K. Liu, Y. L. Cheng, and L. K. Wang, “Crystalline silicon PERC solar cell with ozonized AlOx passivation layer on the rear side”, International Journal of Photoenergy, vol. 2020, article 6686797, 6 pages, 2020. [7]B. Veith, T. Dullweber, M. Siebert, C. Kranz, F. Werner, N. P. Harder, J. Schmidt, B. F. P. Roos, T. Dippell, and R. Brendel, “Comparison of ICP-AlOx and ALD-Al2O3 layers for the rear surface passivation of c-Si solar cells”, Energy Procedia, vol. 27, no. 1876-6102, pp. 379-384, 2012. [8]K. Ogutman, N. Iqbal, G. Gregory, M. Li, M. Haslinger, E. Cornagliotti, W. V. Schoenfeld, J. John, and K. O. Davis, “Spatial atomic layer deposition of aluminum oxide as a passivating hole contact for silicon solar cells”, Physica Status Solidi A, vol. 217, no. 18, 2020. [9]D. M. Chapin , C. S. Fller, and G. L. Pearson, “A new silicon P-N junction photocell for converting solar radiation into electrical power”, Journal of Applied Physics, vol. 25, pp.676-677, 1954. [10]PGE太平洋綠能, “ 2021太陽能趨勢”, Retrieved from https://blog.pgesolar.com.tw/2021/02/08/%E5%A4%AA%E9%99%BD%E8%83%BD%E8%B6%A8%E5%8B%A2 [11]OFweek太陽能光伏網, “主流太陽能電池優劣分析”, Retrieved from https://solar.ofweek.com/2021-01/ART-260006-8140-30481586.html [12]NERL Transforming Energy, “Best Research-Cell Efficiency Chart”, Retrieved from https://www.nrel.gov/pv/cell-efficiency.html [13]Solar Frontier, “Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency of 23.35%”, Retrieved from https://www.solar-frontier.com/eng/news/2019/0117_press [14]J. F. Geisz, R. M. France, and K. L. Schulte, “Six-junction III-V solar cells with 47.1% conversion efficiency under 143 suns concentration”, Nature Energy, vol. 5,no. 4, pp. 326-335, 2020. [15]S. Schäfer and R. Brendel, “Accurate calculation of the absorptance enhances efficiency limit of crystalline silicon solar cells with lambertian light trapping”, IEEE Journal of Photovoltaics, vol. 8, no. 4, pp.1156-1158, 2018. [16]P. Vitanov, E. Goranova, V. Stavrov, P. Ivanov, and P.K. Singh, “Fabrication of buried contact silicon solar cells using porous silicon”, Solar Energy Materials and Solar Cells, vol. 93, no. 3, pp.297-300, 2009. [17]J. Benick, “High efficiency n-type PERT and PERL solar cells”, IEEE 40th Photovoltaic Specialist Conference (PVSC), pp. 3637-3640, 2014. [18]T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells”, Solar Energy Materials and Solar Cells, vol. 95, no. 1, pp. 18-21, 2011. [19]S. Kluska, F. Granek, M. Rüdiger, M. Hermle, and S. W. Glunz, “Modeling and optimization study of industrial n-type high-efficiency back contact back-junction silicon solar cells”, Solar Energy Materials and Solar Cells, vol. 94, no. 3, pp. 568-577, 2010. [20]J. Zhao, A. Wang, M. A. Green, “High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates”, Solar Energy Materials and Solar Cells, vol. 65, no. 1-4, pp.429 - 435, 2001. [21]H. Hannebauer, T. Dullweber, U. Baumann, T. Falcon, and R. Brendel, “21.2%-efficient fineline-printed PERC solar cell with 5 busbar front grid”, Physica Status Solidi RRL, vol. 8, no. 8, pp.675–679, 2014. [22]P. Saint-Cast, “High-efficiency c-Si solar cells passivated with ALD and PECVD aluminum oxide”, IEEE Electron Device Letters , vol. 31, no. 7, pp.695-697, 2010. [23]J. A. Töfflinger, A. Laades, and C. Leendertz, “PECVD-AlOx/SiNx passivation stacks on silicon: effective charge dynamics and interface defect state spectroscopy”, Energy Procedia, vol. 55, no. 1876-6102, pp. 845–854, 2014. [24]M. Bhaisare, A. Misra, and A. Kottantharayil, “Aluminum oxide deposited by pulsed-DC reactive sputtering for crystalline silicon surface passivation”, IEEE Journal of Photovoltaics, vol. 3, no. 3, pp930~935, 2013. [25]M. Farahmandjou and N. Golabiyan, “ New pore structure of nano-alumina (Al2O3) prepared by sol gel method”, Journal of Ceramic Processing Research, vol. 16, no. 2, pp. 1~4, 2015. [26]T. Tsujide, S. Nakanuma, Y. Ikushima, “Properties of aluminum oxide obtain by hydrolysis of AlCl_3”, Journal of the Electrochemical Society, vol. 117, no. 5, pp.703-708, 1970. [27]蕭丞澤,「背面利用由氯化鋁溶液形成氧化鋁鈍化層與局部接觸結構矽晶太陽能電池之研究」,國立清華大學光電工程研究所碩士班碩士論文,民國一百零九年六月。 [28]K. A. Salman, “Effect of surface texturing processes on the performance of crystalline silicon solar cell”, Solar Energy, vol. 147, pp.228-231, 2017. [29]J. Chen, Z. H. J. Tey, Z. R. Du, F. Lin, B. Hoex, and A. G. Aberle, “Investigation of screen printed rear contacts for aluminum local back surface field silicon wafer solar cells”, IEEE Journal of Photovoltaics , vol. 3, no. 2, pp. 690-696, 2013. [30]NTHU Y.-C. Hung Lab, “UV/VIS光譜儀 Lambda 35”, Retrieved from http://oplab.ipt.nthu.edu.tw/main/node/32 [31]Forter Tech, “Oriel Sol3A Class AAA Solar Simulators”, Retrieved from http://www.forter.com.tw/products_detail.asp?seq=2289
|