帳號:guest(3.133.131.251)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳冠亨
作者(外文):Chen,Kuan-Heng
論文名稱(中文):實現具有濾波器及子載波索引調變的通用濾波正交分頻多工應用於毫米波光載射頻行動前傳系統
論文名稱(外文):Implementation of Universal Filtered OFDM with Filter and Subcarrier Index Modulation in MMW-RoF Mobile Fronthaul Systems
指導教授(中文):馮開明
指導教授(外文):Feng, Kai-Ming
口試委員(中文):彭朋群
顏志恆
口試委員(外文):Peng, Peng-Chun
Yan, Jhih-Heng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:108066525
出版年(民國):110
畢業學年度:110
語文別:中文
論文頁數:71
中文關鍵詞:濾波器索引調變索引調變通用濾波正交分頻多工通用濾波多載波行動前傳光載射頻
外文關鍵詞:filter index modulationindex modulationUFOFDMUFMCmobile fronthaulradio over fiber
相關次數:
  • 推薦推薦:0
  • 點閱點閱:486
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文提出一個新穎的實驗展示,將傳統的通用濾波正交分頻多工訊號 (Universal Filtered Orthogonal Frequency-Division Multiplexing , UFOFDM) 加上濾波器索引調變 (Filter Index Modulation, FIM)及子載波索引調變 (Subcarrier Index Modulation ,SIM) 建構在光載射頻 (RoF) 系統。 在該系統中,FIM及SIM 將為傳統調變技術[即開關鍵控(On-Off Keying, OOK)或正交振幅調變 (Quadrature Amplitude Modulation, QAM)] 增加新的自由度。FIM在傳送端利用調整多爾夫-柴比雪夫窗口不同的旁瓣衰減值,將其代表為不同的索引值,在接收端透過偵測濾波器頻率響應之大小,來增加額外的資料傳遞;SIM透過開關傳送端不同的子載波,接收端偵測不同的子載波的狀態(激活和靜默)的方式來增加傳遞信息, 這兩種方式都可以用來進一步提升頻譜效率,本論文進一步將FIM與SIM技術相互結合,進而最大化頻譜使用效率。
本論文在光載射頻實驗中,使用 25 公里光纖和 1 米自由空間的混合鏈路建立了承載 UFOFDM、FIM-UFOFDM 和 FIM-SIM-UFOFDM 信號的 28 GHz RoF 系統。本篇論文分別討論兩個架構,第一個架構, FIM-UFOFDM 在一個資源區塊(4個子載波)內,使用4種不同的濾波器索引值(即旁瓣衰減),與傳統的UFOFDM相比,頻譜效率可提升高達25%,而在第二個架構中,FIM-SIM-UFOFDM與傳統 SIM-UFOFDM系統相比, 在一個資源區塊內,使用4種不同的濾波器索引值,且靜默單一個子載波,頻譜效率同樣可提高25%。
最後透過分析和估計錯誤率低於前向糾錯 (Forward Error Correction, FEC)閾值,因此可以證實,濾波器索引調變不僅可以為傳統UFOFDM帶來新的自由度,還可以進一步提升SIM-UFOFDM之頻譜使用效率。

A novel radio-over-fiber (RoF) system employing filter index modulation (FIM) and subcarrier index modulation (SIM) universal filtered Orthogonal Frequency-Division Multiplexing (UFOFDM) signal is proposed and experimentally demonstrated in this paper. In this system, the FIM and SIM will add new degrees of freedom to the conventional modulation techniques [i.e., On-Off keying (OOK) or Quadrature Amplitude Modulation (QAM)]. Filter index modulation adjusts the different side lobe attenuation value of the Dolphy-Chebyshev window and represents it as a different index value at the transmitter. At the receiver, it increases additional data transmission by detecting the magnitude of the frequency response of the filter; SIM increases the transmission of information by switching different subcarriers at the transmitter and detecting the state (active and silent) of different subcarriers at the receiver. Both methods can be used to further improve the spectral efficiency.
In the radio over fiber experiment, a 28 GHz RoF system carrying UFOFDM, FIM-UFOFDM and FIM-SIM-UFOFDM signals was established with a hybrid link of 25 kilometers of optical fiber and 1 meter of free space. This paper discusses two architectures separately. From the first architecture, we can see that compared with the traditional UFOFDM, FIM-UFOFDM uses 4 different filter index values (i.e., sidelobe attenuation value) in one resource block (4 subcarriers), the spectral efficiency can be increased by up to 25%. In the second architecture, 4 different filter index values are used in one resource block, and a single subcarrier is silent. Compared with the traditional SIM-UFOFDM system, the spectrum efficiency of FIM-SIM-UFOFDM can also be improved. 25%.
Finally, through analysis and estimation, the error rate is lower than the forward error correction (FEC) threshold, so it can be confirmed that the filter index modulation can not only bring new degrees of freedom to the traditional UFOFDM, but also further improve the SIM- UFOFDM spectral efficiency.
目錄
摘要 -------------------------------------------------------------------------------------------- I
ABSTRACT ------------------------------------------------------------------------------------ II致謝 -------------------------------------------------------------------------------------------- III圖目錄 ----------------------------------------------------------------------------------------- VI表目錄 ---------------------------------------------------------------------------------------- VII第 1 章 緒論 -------------------------------------------------------------------------------- 1 1.1 前言 ---------------------------------------------------------------------------------- 1 1.2 研究目的與動機 ------------------------------------------------------------------- 3 1.3 論文架構 ---------------------------------------------------------------------------- 4第 2 章 訊號介紹與實驗系統原理 ------------------------------------------------------ 5 2.1 正交分頻多工(Orthogonal Frequency Division Multiplexing,OFDM) -- 5 2.2 通用多載波正交分頻多工(Universal Filtered OFDM,UFOFDM) ------- 7 2.3 多爾夫-柴比雪夫濾波器(Dolph Chebyshev Filter) -------------------------- 10 2.4 子載波索引調變(Subcarrier Index Modulation,SIM) --------------------- 11 2.4.1 SIM查找表建立 ---------------------------------------------------------- 14 2.4.2 SIM-UFOFDM訊號產生與接收 -------------------------------------- 16 2.5 光載射頻(Radio Over Fiber, RoF)通信系統 --------------------------------- 17 2.4.1 光纖整合無線網路的分類 -------------------------------------------- 18 2.4.2 直接檢測機制 ------------------------------------------------------------- 20第 3 章 系統理論與想法 ----------------------------------------------------------------- 22 3.1 濾波器索引調變(Filter Index Modulation,FIM) --------------------------- 22 3.2 濾波器索引值產生與偵測 ------------------------------------------------------ 24 3.3 FIM-UFOFDM訊號產生與接收 ----------------------------------------------- 32 3.4 結合濾波器與子載波索引調變 ------------------------------------------------ 35 3.5 FIM-SIM-UFOFDM訊號產生與接收 ----------------------------------------- 37 3.6 SIM及FIM頻譜使用效益 ------------------------------------------------------ 39第 4 章 實驗設置與結果 ----------------------------------------------------------------- 41 4.1 FIM-UFOFDM系統架構與參數設置 ----------------------------------------- 42 4.2 FIM-UFOFDM實驗結果分析 -------------------------------------------------- 45 4.2.1 實驗結果分析-不同濾波器索引值分配的比較 --------------------- 45 4.2.2 實驗結果分析-不同濾波器長度的比較 ------------------------------ 50 4.2.3 實驗結果分析-不同資源區塊的比較 --------------------------------- 54 4.2.4 實驗結果分析-接收光功率的比較 ------------------------------------ 56 4.3 SIM-UFOFDM與 FIM-SIM-UFOFDM系統架構 ------------------------- 60 4.4 SIM-UFOFDM與FIM-SIM-UFOFDM結果分析 -------------------------- 61 4.4.1 結果分析-SIM-UFOFDM接收光功率的比較 ---------------------- 61 4.4.2 結果分析FIM-SIM-UFOFDM接收光功率的比較 ---------------- 63第 5 章 結論 -------------------------------------------------------------------------------- 69參考文獻 -------------------------------------------------------------------------------------- 70
[1] G. Wunder, M. Kasparick, S. ten Brink, F. Schaich, T. Wild, I. Gaspar, E. Ohlmer, S. Krone, N. Michailow, A. Navarro, G. Fettweis, D. Ktenas, V. Berg, M. Dryjanski, S. Pietrzyk, and B. Eged, “5gnow: Challenging the lte design paradigms of orthogonality and synchronicity,” in Vehicular Technology Conference (VTC Spring), 2013 IEEE 77th, June 2013, pp. 1–5.
[2] G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5gnow: non-orthogonal, asynchronous waveforms for future mobile applications,” Communications Magazine, IEEE, vol. 52, no. 2, pp. 97–105, February 2014.
[3] B. Anass, "IMT-2020 Radio Interface Standardization Trends in ITU-R", NTT DOCOMO Technical Journal., vol. 19, no. 3, pp. 55-63, Jan. 2018.”
[4] M. G. Bellanger, “Specification and design of a prototype filter for filter bank based multicarrier transmission,” in Proc. IEEE Int. Conf. on Acoust., Speech, Signal Process. (ICASSP), vol. 4, Salt Lake City, UT, May 2001, pp. 2417–2420.
[5] B. Farhang-Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process. Mag., vol. 28, pp. 92 –112, May 2011.
[6] P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process., vol. 50, pp. 1170–1183, May 2002.
[7] Vida Vakilian;Thorsten Wild;Frank Schaich;Stephan ten Brink;Jean-François Frigon “Universal-filtered multi-carrier technique for wireless systems beyond LTE”, IEEE Globecom Workshops (GC Wkshps), pp.223-228, 2013.
[8] T. Wild, F. Schaich, and Y. Chen, “5G Air Interface Design based on Universal Filtered (UF-)OFDM,” in Int. Conf. on Dig. Sig. Processing (DSP’14), August 2014.
[9] F. Schaich and T. Wild, “Waveform contenders for 5G – OFDM vs. FBMC vs. UFMC,” in 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), May 2014, pp. 457–460.
[10] C. L. Dolph, ``A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level,'' Proceedings of the IRE, vol. 34, pp. 335-348, 1946.
[11] E. Basar, M. Wen, R. Mesleh, M. Di Renzo, Y. Xiao and H. Haas, "Index Modulation Techniques for Next-Generation Wireless Networks," in IEEE Access, vol. 5, pp. 16693-16746, 2017, doi: 10.1109/ACCESS.2017.2737528.
[12] D. Tsonev, S. Sinanovic, and H. Haas, “Enhanced subcarrier index modulation (SIM) OFDM,” in Proc. IEEE GLOBECOM Workshops, Houston,TX, USA, Dec. 2011, pp. 728–732.
[13] T. Tang, X. Zou, P. Li, W. Pan, B. Luo and L. Yan, "Proposal and Demonstration of Subcarrier Index Modulation OFDM for RoF System With Enhanced Spectral Efficiency," in Journal of Lightwave Technology, vol. 36, no. 19, pp. 4501-4506, Oct.1, 2018, doi: 10.1109/JLT.2018.2829746.
[14] E. Basar, "Index modulation techniques for 5G wireless networks," in IEEE Communications Magazine, vol. 54, no. 7, pp. 168-175, July 2016, doi: 10.1109/MCOM.2016.7509396.
[15] E. Başar, Ü. Aygölü, E. Panayırcı and H. V. Poor, "Orthogonal Frequency Division Multiplexing With Index Modulation," in IEEE Transactions on Signal Processing, vol. 61, no. 22, pp. 5536-5549, Nov.15, 2013, doi: 10.1109/TSP.2013.2279771.
[16] C. Lim, A. Nirmalathas, Yizhuo Yang, D. Novak and R. Waterhouse, "Radio-over-fiber systems," 2009 Asia Communications and Photonics conference and Exhibition (ACP), Shanghai, 2009, pp. 1-10.
[17] C. Lim, Y. Yang, and A. Nirmalathas, "Transport schemes for fiber-wireless technology: Transmission performance and energy efficiency," in Photonics, 2014, vol. 1, no. 2, pp. 67-82: Multidisciplinary Digital Publishing Institute.
[18] A. J. J. O. E. Lowery, "Amplified-spontaneous noise limit of optical OFDM lightwave systems," vol. 16, no. 2, pp. 860-865, 2008.
[19] D. Halliday, R. Resnick, and J. Walker, Extended, Fundamentals of Physics, 6th Edition,New York: John Wiley and Sons, Inc., 2000.
[20] J. R. Rice, The Approximation of Functions, Volume I,Reading MA: Addison-Wesley, 1964.p94

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *