帳號:guest(3.139.81.220)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張宇翔
作者(外文):Chang, Yu-Xiang
論文名稱(中文):螢光纖維素薄膜製程及其光學異向性量測之嘗試
論文名稱(外文):Attempts to Analyze the Optical Anisotropy of Thin Films of Fluorescein-Labelled Cellulose
指導教授(中文):大江昌人
指導教授(外文):Oh-e, Masahito
口試委員(中文):潘犀靈
張亞中
陳祺
口試委員(外文):Pan, Ci-Ling
Chang, Yia-Chung
Chen, Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:108066523
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:73
中文關鍵詞:纖維素奈米晶粒分子排列分子操控偏振相依螢光光譜光學異向性
外文關鍵詞:cellulose nanocrystalsmolecular alignmentmolecule manipulationpolarization dependence photoluminescence spectroscopyoptical anisotropy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:161
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,纖維素光子學與其潛在應用價值受到學界的高度關注,而對於其基礎科學及
性質的研究仍然值得深究。例如,透過控制纖維素分子排列來達到可調式的選擇性反射光、在排列的纖維素分子中,光子的能量傳遞行為如何,這些都值得深入探討,並期待透過進一步掌握纖維素分子本徵來擴大開發其在生醫、光電成像系統中的應用價值。本文將著重在對於螢光素標定之纖維素奈米晶粒(fluorescein-labelled cellulose nanocrystals, FL-CNCs)分子如何透過外力進行排列進而達成其光學異向性,以及適合的光學檢測系統架設。
分子操縱行為及探究為並非一蹴可及的,傳統的懸膜技術容易遭遇瓶頸,如:分子凝
團、等向性空間分布。因此,我們嘗試透過不同技巧來製作均質、且具異向性排列的螢光纖維素薄膜,搭配遠場光譜影像檢測,來迭代出分子的有效排列。最終,我們以光柵的高分子翻模做為微流道,透過緩速重力拉伸及轉印來達成有效、且範圍較廣的分子排列,並進一步加以線性偏振雷射來進行螢光之偏振相依性的局部光譜定性測量。結果顯示,在部分空間分布較疏鬆(週期為3.3 微米)的螢光纖維素排列有奇異的單角度偏振響應,而較為緊密的排列(週期為1.6 微米)並不能展現異向性。此結論目前尚未有定論,需要近一步的重複試驗;另一方面,為了降低人為誤差以及找出更適合的樣品製備尺度,我們提出朗謬爾布羅傑特法(Langmuir-Blodgett technique)作為未來可行的研究方向。
To advance cellulose photonics and develop its optoelectronic devices, fundamental researches are required. For example, controlling the iridescence of cellulose films by manipulating the alignment and helical pitch of cellulose nanocrystals and characterizing the molecular alignment in the films. In this thesis, we have attempted to analyze molecular alignment from the optical anisotropy of thin films of fluorescein-labelled cellulose nanocrystals (FL-CNCs), which would have potential applications in biological and optoelectronic imaging systems.
However, spin-coated thin films of FL-CNCs was found to be partially non-uniform because of aggregates of molecules, which prompts us to investigate several other ways of making its thin films of FL-CNCs. As a result, to prepare the thin films of FL-CNCs, we have chosen the template-stamping method — the slowly dripping process of a FL-CNCs suspension onto the surface of a polymer, wherein a grating is duplicated from a grating optical element. Generally, this method provides well-aligned thin films of molecules. Using the thin films prepared by the template-stamping method, we have attempted to characterize the optical anisotropy of the films by means of polarization-angle-dependent photoluminescence spectroscopy. An azimuthally anisotropic feature is observed from the bundles of FL-CNCs aligned on the grooved surface with a period of 3.3 μm. By contrast, no anisotropic features are observed from those aligned with a period of 1.6 μm. This observation would be intriguing; however, further investigations to confirm these results would be required.
Most of the experiments were conducted in Academia Sinica, and what I learned there is also summarized in this thesis.
摘要(1)
ABSTRACT(2)
ACKNOWLEDGEMENT(3)
TABLE OF CONTENT(4)
LIST OF FIGURE(6)
LIST OF TABLE(7)
CH 1 INTRODUCTION(8)
1-1 CELLULOSE PHOTONICS 8
1-2 ANISOTROPIC CELLULOSE CRYSTALS(11)
1-3 PURPOSE OF THE STUDY(12)
CH 2 LITERATURE REVIEW(13)
2-1 POLARIZATION DEPENDENCE IN MICRO-, MESO-, MACRO-CRYSTALLINE CNCS(13)
2-2 LITERATURE REVIEW OF BOTTOM-UP METHODOLOGY FOR CNC THIN-FILMS(14)
2-2.1 Preparation of Cellulose Nanocrystal(14)
2-2.2 Micro-Crystalline CNC Thin Film Formation Technique(16)
2-2-2.1 Spin Coating(16)
2-2-2.2 Langmuir-Blodgett Technique(17)
2-2-2.3 Microfluidic Template Stamping Technique(18)
CH 3 EXPERIMENTAL METHOD(20)
3-1 INTRODUCTION TO THE TARGET MATERIAL: CELLULOSE-FLUORESCEIN CE566(20)
3-1.1 Chemical Structure(21)
3-1.2 Dimension(22)
3-2 PREPARATION OF THE CE566 SUSPENSION(24)
3-3 SPIN COATING TRIALS(27)
3-3.1 Traditional Spin Coating Trials(27)
3-3.2 Modified Spin Coating Trials(29)
3-3.3 The Trio Speed Method(30)
3-4 TEMPLATE STAMPING TRIALS(32)
3-4.1 Duplication of Microfluidic Template: PDMS Grating(32)
3-4.2 Injective Dripping of CE566 Suspension on PDMS Duplicate Grating(37)
3-4.3 Transfer of the Thin-Film(38)
3-5 OPTICAL SETUP OF POLARIZATION ANGLE-DEPENDENCE PHOTOLUMINESCENCE MEASUREMENT(38)
CH 4 RESULTS AND DISCUSSION(41)
4-1 SURFACE ANALYSIS OF PDMS DUPLICATE GRATING(41)
4-1.1 Effect of Different Silane Before Surface Treatment(41)
4-1.2 Effect of Different Surface Treatment on PDMS Template(43)
4-2 MORPHOLOGY OF PDMS DUPLICATE GRATING(45)
4-2.1 Scanning Electron Microscope (SEM)(45)
4-2-1.1 Untreated PDMS Duplicate Grating(45)
4-2-1.2 O2 Plasma Treated PDMS Duplicate Grating(47)
4-2.2 Laser Diffraction Test(48)
4-3 OPTICAL ANALYSIS OF THE TEMPLATE STAMPING THIN-FILMS(50)
4-3.1 Effect of Different Operations on Thin-films Formation(51)
4-3-1.1 Changing the Stamping Times (#)(51)
4-3-1.2 Changing the Solvents (DI Water/ PBS Buffer Solution)(53)
4-3-1.3 Optical Quenching/ Photobleaching Phenomenon(54)
4-3.2 Fluorescence Spectroscopy Analysis(55)
4-3-2.1 Laser’s Linear Polarization Angle(55)
4-3-2.2 Exposure Time and Exposed Region(56)
4-3-2.3 Spectra of the ITO samples: ITO300 and ITO600(58)
4-3-2.4 Polarization-Angle Dependence Photoluminescence (PADPL) Analysis(61)
4-4 POTENTIAL AMENDMENT TO STUDY DIRECTION(64)
CH 5 CONCLUSION(65)
CH 6 REFERENCE(66)
APPENDIX(69)
SPECTRA DATA PROCESSING CODE(MATLAB)(69)
[1] The UN 2030 Agenda. Twentythirty. (n.d.). Retrieved June 22, 2022, from https://twentythirty.com/?gclid=CjwKCAjw77WVBhBuEiwAJ-YoJHKT5jBsODhhJOcV0xehWdnuqlFmRfv0AzgaAMgXHsSM2xAGj9DxjRoCmV4QAvD_BwE&fbclid=IwAR247znnh0OQL8ff8FdVzWechOBIgZ5ewEvoab14K5EPjInq2OP1XitWQO0
[2] Helmenstine, A., & Helmenstine, A. (2021, December 23). Iridescent plants for your home and garden. Science Notes and Projects. Retrieved June 22, 2022, from https://sciencenotes.org/iridescent-plants-for-your-home-and-garden/?fbclid=IwAR27wD53pVfi8gmtQbu8yPBvw982Im_U7PdlN4BncXKpb5rTLz42Waxvwvg
[3] B. Thomas, M. C. Raj, A. K. B, R. M. H, J. Joy, A. Moores, G. L. Drisko, C. Sanchez, Chem. Rev. 2018, 118, 11575.
[4] O. V. Surov, M. I. Voronova, A. G. Zakharov, Russ. Chem. Rev. 2017, 86, 907.
[5] A. Espinha, C. Dore, C. Matricardi, M. I. Alonso, A. R. Goñi, A. Mihi, Nature Photonics 2018, 12, 343.
[6] K. Li, C. M. Clarkson, L. Wang, Y. Liu, M. Lamm, Z. Pang, Y. Zhou, J. Qian, M. Tajvidi, D. J. Gardner, H. Tekinalp, L. Hu, T. Li, A. J. Ragauskas, J. P. Youngblood, S. Ozcan, ACS Nano 2021, 15, 3646.
[7] G. C. M. Germano, Y. D. R. Machado, L. Martinho, S. N. Fernandes, A. M. L. M. Costa, E. Pecoraro, A. S. L. Gomes, I. C. S. Carvalho, J. Opt. Soc. Am. B 2020, 37, 24.
[8] M. V. Santos, F. E. Maturi, E. Pecoraro, R. A. S. Ferreira, L. D. Carlos, S. J. L. Ribeiro, "Photonic materials displaying direction modulated photoluminescence", presented at 2019 SBFoton International Optics and Photonics Conference (SBFoton IOPC), 2019/10//, 2019.
[9] S. Chen, Y. Song, D. Ding, Z. Ling, F. Xu, Advanced Functional Materials 2018, 28, 1802547.
[10] A. Kafy, H. C. Kim, L. Zhai, J. W. Kim, L. V. Hai, T. J. Kang, J. kim, Scientific Reports 2017, 7, 17683.
[11] S. Hooshmand, Y. Aitomäki, N. Norberg, A. P. Mathew, K. Oksman, ACS Applied Materials & Interfaces 2015, 7, 13022.
[12] S. Hooshmand, Y. Aitomäki, L. Berglund, A. P. Mathew, K. Oksman, Composites Science and Technology 2017, 150, 79.
[13] D. Bordel, J.-L. Putaux, L. Heux, Langmuir 2006, 22, 4899.
[14] Y. Habibi, T. Heim, R. Douillard, J. Polym. Sci. B Polym. Phys. 2008, 46, 1430.
[15] W. J. Orts, L. Godbout, R. H. Marchessault, J. F. Revol, Macromolecules 1998, 31, 5717.
[16] A. D. Haywood, V. A. Davis, Cellulose 2017, 24, 705.
[17] R. A. Chowdhury, S. X. Peng, J. Youngblood, Cellulose 2017, 24, 1957.
[18] M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, D. C. Prasher, Science 1994, 263, 802.
67
[19] R. Heim, R. Y. Tsien, Current Biology 1996, 6, 178.
[20] T. Ebeling, M. Paillet, R. Borsali, O. Diat, A. Dufresne, J. Y. Cavaillé, H. Chanzy, Langmuir 1999, 15, 6123.
[21] M. Alizadehgiashi, A. Khabibullin, Y. Li, E. Prince, M. Abolhasani, E. Kumacheva, Langmuir 2018, 34, 322.
[22] T. Pullawan, A. N. Wilkinson, S. J. Eichhorn, Biomacromolecules 2012, 13, 2528.
[23] L. Csoka, I. C. Hoeger, P. Peralta, I. Peszlen, O. J. Rojas, Journal of Colloid and Interface Science 2011, 363, 206.
[24] G. Nyström, A. B. Fall, L. Carlsson, L. Wågberg, Cellulose 2014, 21, 1591.
[25] A. Mendoza-Galván, E. Muñoz-Pineda, S. J. L. Ribeiro, M. V. Santos, K. Järrendahl, H. Arwin, Journal of Optics 2018, 20, 024001.
[26] W. Li, J. Yue, S. Liu, Ultrasonics Sonochemistry 2012, 19, 479.
[27] J. Araki, M. Wada, S. Kuga, T. Okano, J Wood Sci 1999, 45, 258.
[28] T. Koshizawa, JAPAN TAPPI JOURNAL 1960, 14, 455.
[29] H. Sadeghifar, I. Filpponen, S. P. Clarke, D. F. Brougham, D. S. Argyropoulos, Journal of Materials Science 2011, 46, 7344.
[30] Y. Tang, S. Yang, N. Zhang, J. Zhang, Cellulose 2014, 21, 335.
[31] D. Meyerhofer, Journal of Applied Physics 1978, 49, 3993.
[32] T. J. Rehg, G. Higgins, AIChE J. 1992, 38, 489.
[33] E. Kontturi, L.-S. Johansson, K. S. Kontturi, P. Ahonen, P. C. Thüne, J. Laine, Langmuir 2007, 23, 9674.
[34] H. Kusano, S.-i. Kimura, M. Kitagaw, in Cellulose - Fundamental Aspects, (Ed: T. G. M. Van De Ven), InTech, 2013.
[35] Y. Habibi, L. Foulon, V. Aguié-Béghin, M. Molinari, R. Douillard, Journal of Colloid and Interface Science 2007, 316, 388.
[36] Y. Habibi, I. Hoeger, S. S. Kelley, O. J. Rojas, Langmuir 2010, 26, 990.
[37] C. Lu, H. Möhwald, A. Fery, Soft Matter 2007, 3, 1530.
[38] A. Schweikart, A. Horn, A. Böker, A. Fery, in Complex Macromolecular Systems I, Vol. 227 (Eds: A. H. E. Müller, H.-W. Schmidt), Springer Berlin Heidelberg, Berlin, Heidelberg 2009, 75.
[39] I. Usov, G. Nyström, J. Adamcik, S. Handschin, C. Schütz, A. Fall, L. Bergström, R. Mezzenga, Nature Communications 2015, 6, 7564.
[40] M. Arcari, E. Zuccarella, R. Axelrod, J. Adamcik, A. Sánchez-Ferrer, R. Mezzenga, G. Nyström, Biomacromolecules 2019, 20, 1288.
[41] J. Majoinen, J. S. Haataja, D. Appelhans, A. Lederer, A. Olszewska, J. Seitsonen, V. Aseyev, E. Kontturi, H. Rosilo, M. Österberg, N. Houbenov, O. Ikkala, Journal of the American Chemical Society 2014, 136, 866.
[42] Y. Ogawa, Nanoscale 2019, 11, 21767.
[43] Y. Arima, H. Iwata, Biomaterials 2007, 28, 3074.
[44] S. Hiasa, A. Kumagai, T. Endo, Y. Edashige, JFST 2016, 72, 17.
68
[45] S. K. Park, Y.-J. Kwark, J. Moon, C. W. Joo, B. Yu, J.-I. Lee, Macromol. Rapid Commun. 2015, 36, 2006.
[46] D. A. Hook, J. A. Olhausen, J. Krim, M. T. Dugger, J. Microelectromech. Syst. 2010, 19, 1292.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *