帳號:guest(3.133.147.142)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳佳謙
作者(外文):Wu, Jia-Qian
論文名稱(中文):利用電漿輔助化學氣相沉積法鍍製四分之一光學厚度氮氧化矽與氮化矽堆疊膜應用於雷射干涉重力波偵測器反射鏡之研究
論文名稱(外文):Study of silicon oxynitride and silicon nitride quarter-wave stack fabricated by a plasma enhanced chemical vapor deposition method for mirror coating of laser interferometer gravitational wave detectors
指導教授(中文):趙煦
指導教授(外文):Chao, Shiuh
口試委員(中文):陳至信
井上優貴
口試委員(外文):Chen, Jyh-Shin
Inoue, Yuki
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:108066506
出版年(民國):110
畢業學年度:110
語文別:中文
論文頁數:71
中文關鍵詞:機械損耗氮氧化矽氮化矽熱擾動雷射重力波偵測器
外文關鍵詞:mechanical losssilicon oxynitridesilicon nitridecoating thermal noiselaser interference gravitational waves detector
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗室參與重力波觀測組織 (LIGO, Laser Interferometer Gravitational wave Observatory) 的研究計畫,其利用大型麥克森干涉儀量測重力波訊號,由於重力波訊號相當微弱,難以偵測,因此量測時必須盡可能減少額外雜訊。由雜訊頻譜中可知,在 40-400Hz 左右,雜訊來源主要為薄膜熱擾動 coating Brownian noise,此雜訊為薄膜產生且難以直接量測得到,但經由 fluctuation dissipation theorem 可知該雜訊與薄膜本身之機械損耗成正比關係,因此透過量測高反射鏡薄膜機械損耗去探討薄膜熱擾動為本實驗主要研究重點。
先前本實驗室利用 PECVD 開發出氮化矽薄膜材料SiN0.33H0.58,其具備高折射係數、低且平坦的低溫機械損耗,但薄膜的光學吸收偏高;低折射係數方面,開發出透過 N 原子取代 O 原子來抑制因Si-O-Si鍵之two-level system造成的低溫機械損耗峰值,形成不同於 SiO2 非晶結構的氮氧化矽 SiO0.85N0.27H0.45(ratio3) 薄膜,不僅改善了 SiO2 的低溫機械損耗峰值問題,還保有低折射率、低光學吸收的特性。因此選用SiN0.33H0.58 與 SiO0.85N0.27H0.45(ratio3) 作為重力波高反射鏡薄膜材料。
本研究前半部分探討四分之一 1550nm 波長 SiON(ratio3)/SiN0.33堆疊膜之室溫機械損耗。1-pair、2-pair 及 4-pair 堆疊膜損耗量測結果相近,表示 SiON(ratio3)/SiN0.33 介面對機械損耗影響不大。頻率於 100Hz 之機械損耗約為10-5 order,此結果低於目前室溫重力波探測器 aLIGO 所使用的高反射鏡材料 TiO2-doped Ta2O5/SiO2 約下降了 2 倍。後半部分透過光學模擬軟體 Essential Macleod 設計氮氧化矽/氮化矽堆疊高反射鏡的堆疊結構並評估其光學穿透與吸收,再透過 Bulk and shear loss angle 評估氮氧化矽/氮化矽堆疊高反射鏡結構的熱雜訊(coating thermal noise),將這些評估結果與重力波偵測器規格做比較,結果說明氮氧化矽/氮化矽堆疊高反射鏡結構的熱雜訊低於現今室溫重力波偵測器 aLIGO 反射鏡規格約 1.5 倍。
Our laboratory has participated in the research project of the Laser Interferometer Gravitational Wave Observatory(LIGO), which detects the gravity wave signal by large Michelson interferometer. Due to that the signal of gravitational wave is extremely weak and difficult to detect, it’s necessary to reduce the another noise during measurement. According to the noise spectrum, the sensitivity of interferometer is mostly limited by coating Brownian noise at 40-400Hz. The noise is generated by the thin film and is difficult to directly measure. The coating Brownian noise, which is proportional to mechanical loss stated by fluctuation-dissipation theorem. Therefore, the main research focus is to investigate the thermal noise of the film by measuring the mechanical loss.
Our research group developed NH3-free silicon nitride thin film, SiN0.33H0.58, which had a high refractive index and low cryogenic loss without loss peak, however, slightly higher optical absorption. In terms of low refractive index, we have developed the use of N atoms to replace O atoms to suppress the cryogenic loss peak caused by the two-level system of Si-O-Si bonds, forming silicon oxynitride SiO0.85N0.27H0.45 which is different from the amorphous SiO2 structure. Silicon oxynitride not only improves the cryogenic loss peak problem of SiO2, but also still have low refractive index and low optical absorption characteristic. Therefore, SiN0.33H0.58 and SiO0.85N0.27H0.45(ratio3) are selected as the materials for high reflection mirror coating.
The first half of this study is that discusses the room-temperature mechanical loss of SiON(ratio3)/SiN0.33 quarter-wave (QW) stacks. The mechanical loss results of 1-, 2- and 4-pair stacked samples are similar, indicating that the SiON(ratio3)/SiN0.33 interface has little effect on the mechanical loss. The loss is in 10-5 order at 100 Hz, this result is lower than the mirror coating TiO2-doped Ta2O5/SiO2 used in aLIGO about 2.2 times lower. The second half of this study is the optical simulation software Essential Macleod were used for designing the HR mirror structures of the silicon oxynitride/silicon nitride evaluate its optical transmission and absorption. The bulk and shear loss angle were used to evaluate the thermal noise of the silicon oxynitride/silicon nitride stacked structure. These results are compared with the specifications of the gravitational wave detectors and it showed that the thermal noise of the silicon oxynitride/silicon nitride stacked structure is about 1.5 times lower than the aLIGO specification of room temperature gravitational wave detector.
目錄
Abstract II
摘要 IV
致謝 V
目錄 VII
圖目錄 IX
表目錄 XI
第一章 導論 1
1-1 引言 1
1-2 動機 3
第二章 氮氧化矽與氮化矽堆疊膜製作 6
2-1矽懸臂基板製程與共振模態 6
2-2堆疊膜薄膜材料:SiON(ratio3)、SiN0.33 9
2-3 SiON(ratio3)/SiN0.33 堆疊膜製程 12
第三章 氮氧化矽與氮化矽堆疊膜之機械損耗 18
3-1 機械損耗原理與量測系統 18
3-1.1 機械損耗原理 18
3-1.2 室溫機械損耗量測系統介紹 19
3-1.3 低溫機械損耗量測系統介紹 21
3-2 氮氧化矽與氮化矽堆疊膜之室溫機械損耗 24
3-2.1 以 SiON(ratio3) 及 SiN0.33 之機械損耗計算堆疊膜機械損耗理論值 24
3-2.2 1-pair、2-pair 與 4-pair 之 SiON(ratio3)/SiN0.33 堆疊膜機械損耗量測結果與分析 27
第四章 氮氧化矽與氮化矽高反射鏡堆疊膜之 thermal noise 33
4-1 Thermal noise 公式介紹 33
4-2 SiON(ratio3)/SiN0.33 堆疊之 bulk 與 shear 機械損耗 34
4-2.1 Bulk 與 shear 能量比 34
4-2.2 Bulk 與 shear 機械損耗 36
4-3 SiON(ratio3)/SiN0.33高反射鏡堆疊膜之 thermal noise 39
4-3.1 SiON(ratio3)/SiN0.33 高反射鏡堆疊結構 39
4-3.2 Thermal noise 估算結果 41
第五章 總結與未來工作 43
5-1 總結 43
5-2 未來工作 44
附錄A 試片各層SiON(ratio3)、SiN0.33之薄膜厚度 47
附錄B 室溫量測系統夾具問題與改善方法 49
附錄C COMSOL 模擬 SiON(ratio3)/SiN0.33 堆疊膜能量比之流程 51
附錄D Essential Macleod 之高反射鏡模擬 62
參考文獻 66

[1] A. Einstein, “Die grundlage der allgemeinen relativitätstheorie, Annalen der Physik”, 49, 769 (1916).
[2] R. A. Hulse et al., “Discovery of a pulsar in a binary system”, The Astrophysical journal 195 (1975) L51.
[3] B. P. Abbott et al., Observation of Gravitational Waves from a Binary Black Hole Merger, PRL, 116, 061102 (2016).
[4] B. P. Abbott et al., “GW151226: Observation of Gravitational Wavess from a 22-Solar-Mass Binary Black Hole Coalescence”, Phys. Rev. Lett. 116, 241103 (2016).
[5] B. P. Abbott et al., “GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2”, Phys. Rev. Lett. 118, 221101 (2017).
[6] B. P. Abbott et al., “GW170814: A Three-Detector Observation of Gravitational Wavess from a Binary Black Hole Coalescence”, Phys. Rev. Lett. 119, 141101 (2017).
[7] B. P. Abbott et al., “GW170817: Observation of Gravitational Wavess from a Binary Neutron Star Inspiral”, Phys. Rev. Lett. 119, 161101 (2017).
[8] B. P. Abbott et al., “GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙”, Phys. Rev. Lett. 125, 101102 (2020).
[9] LIGO Scientific Collaboration, Instrument Science White Paper 2019, LIGO Document: LIGO-T1900409-v2 (2019).
[10] H. B. Callen, T. A. Weltont. Irreversibility and generalized noise. Phys. Rev., Jul. 83, 34-40 (1951).
[11] ET Science Team, “Einstein gravitational wave telescope conceptual design study: ET-0106C-10” (European gravitational observatory, Cascina Italy, (2011) https://tds.virgo-gw.eu/?call_file=ET-0106C-10.pdf .
[12] K. Somiya, “Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector”, Class. Quantum Grav. 29, 124007 (2012).
[13] R. Adhikari et al., “LIGO III Blue Concept LIGO”, LIGO Report No. LIGO-G1200573 (2012) http://dcc.ligo.org/LIGO-G1200573-v1/public .
[14] LIGO Scientific Collaboration, “Advanced LIGO”, Classical Quant. Grav. 32, 074001 (2015).
[15] G. Vajente, L. Yang, A. Davenport, M. Fazio, et al., “Low Mechanical Loss TiO2∶GeO2 Coatings for Reduced Thermal Noise in Gravitational Wave Interferometers”, Phys. Rev. L. 127, 071101 (2021).
[16] I. W. Martin et al., “Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2”, Class. Quantum Grav. 26, 155012 (2009).
[17] I. W. Martin et al., “Low temperature mechanical dissipation of an ion-beam sputtered silica film, Class. Quantum Grav”, 31, 035019 (2014).
[18] Z. L. Huang, “The optical properties of PECVD silicon nitride films after thermal annealing, and the optical and mechanical properties of NH3-free PECVD silicon nitride films”, Master thesis, National Tsing Hua University (2019).
[19] W. J. Tsai, “Study of the optical and mechanical properties of silicon oxynitride thin films fabricated by plasma enhanced chemical vapor deposition”, Master thesis, National Tsing Hua University (2020).
[20] W. Y. Wang, “Study of mechanical vibration and loss of silicon cantilever for development of the high-reflection mirror in the laser interference gravitational wave detector”. Master thesis, National Tsing Hua University (2013).
[21] C. W. Lee, “Study of the material properties and the mechanical loss of the silicon nitride films deposited by PECVD method on silicon cantilever for laser interference gravitational wave detector application”, Master thesis, National Tsing Hua University (2013).
[22] B. A. Walmsley, Y. Liu, X. Z. Hu, M. B. Bush, J.M. Dell, and L. Faraone, Poisson’s ratio of low-temperature PECVD silicon nitride thin films, J. Microelectromech. Syst. 16, 622 (2007).
[23] J. Thurn and R. F. Cook, Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films, J. Appl. Phy. 91, 1988 (2002).
[24] Jessica Steinlechner, Iain W. Martin, Jim Hough, et al., “Thermal noise reduction and absorption optimization via multimaterial coatings”, Phys. Rev. D 91, 042001 (2015).
[25] S. T. Thornton, J. B. Marion, “Classical dynamics of particles and systems”, Brooks Cole, 5: 109-121 (2003).
[26] D. R. M. Crooks, “Mechanical loss and its significance in test mass mirrors of gravitational wave detectors”, Ph.D. thesis, University of Glasgow, 121-123 (2002).
[27] X. Liu, R. O. Pohl, “Low-energy excitations in amorphous films of silicon and germanium”, Phys. Rev. B, Oct. 58: 9067-9081(1998).
[28] B. E. W. Jr., R. O. Pohl, “Thin films: stresses and mechanical properties V: Elastic properties of thin films”, Mater. Res. Soc., Pittsburgh, Jun. (1995).
[29] H. C. Tsai, W. Fang, “Determining the Poisson's ratio of thin film materials using resonant method”, Sensors and Actuators A, 103: 377-383 (2003).
[30] J. S. Oul, “Setup of room temperature mechanical loss measurement and preliminary measurement results on fused silica and silicon cantilevers”, Master thesis, National Tsing Hua University (2012).
[31] C. Cheng, “Cryogenic mechanical loss measurement system setup and annealing effect on the mechanical loss of the nano-layer coatings”, Master thesis, National Tsing Hua University (2015).
[32] R. Nawrodt , A. Zimmer, S. Nietzsche, M. Thürk, W. Vodel, P. Seidel, “A new apparatus for mechanical Q-factor measurements between 5 and 300 K”, Cryogenics 46, 718-723 (2006).
[33] A. S. Nowick et al., “Anelastic relaxation in crystalline solid”, New York: 101 Academic Press (1972).
[34] Jessica Steinlechner, Iain W. Martin, Jim Hough, et al., “Thermal noise reduction and absorption optimization via multimaterial coatings”, Phys. Rev. D 91 , 042001 (2015).
[35] M.R. Abernathy, X. Liu, T.H. Metcalf, An overview of research into low internal friction optical coatings by the gravitational wave detection community, Mat. Res. 21 (suppl.2) (2018).
[36] T. Hong, H. Yang, E. K. Gustafson, R. X. Adhikari, and Y. Chen, “Brownian thermal noise in multilayer coated mirrors”, Phys. Rev. D 87, 082001 (2013).
[37] H. W. Pan, “Study of silicon nitride and silica films fabricated by a plasma enhanced chemical vapor deposition method for low thermal noise mirror coating of laser interferometer gravitational wave detectors”, PhD Thesis, National Tsing Hua University (2018).
[38] W. Yam, S. Gras, and M. Evans, “Multimaterial coatings with reduced thermal noise”Phys. Rev. D 91, 042002 (2015).
[39] J. Steinlechner and I. W. Martin, “Thermal noise from icy mirrors in gravitational wave detectors”, Phys. Rev. Research1, 013008 (2019).
[40] M. M. Fejer, S. Rowan, G. Cagnoli, D. R. M. Crooks, A. Gretarsson, G.M. Harry, J. Hough, S. D. Penn, P. H. Sneddon, and S. P. Vyatchanin, “Thermoelastic dissipation in inhomogeneous media: loss measurements and displacement noise in coated test masses for interferometric gravitational wave detectors”, Phys. Rev. D 70, 082003 (2004)
[41] P. W. Baumeister, “in Optical Coating Technology”, SPIE press, Bellingham, Ch. 5.3.1, p. 5–19 (2004)
[42] H. A. Macleod, “in Thin-Film Optical Filters 2nd ed”, Bristol. Hilger, Ch.5, p. 165 (2001).
[43] Y. H. Kao, “Study the reduction of optical absorption of the oxynitride thin film fabricated by plasma enhanced chemical vapor deposition”, Master thesis, National Tsing Hua University (2021).
[44] D. L. Tsai, “Study of the material properties of silicon nitride thin films fabricated by low pressure chemical vapor deposition for mirror coating of laser interferometer gravitational waves detector, Master thesis”, National Tsing Hua University (2021).
[45] D. R. Southworth, R. A. Barton, S. S. Verbridge, B. Ilic, A. D. Fefferman, H. G. Craighead, and J. M. Parpia, “Stress and silicon nitride: A crack in the universal dissipation of glasses”, Phys. Rev. Lett. 102, 225503 (2009).
[46] G.E. Jellison, Jr et al., “Spectroscopic ellipsometry characterization of thin-film silicon nitride”, Thin Solid Films, 313-314, 193-197 (1998).
[47] G.E. Jellison, Jr et al., “Parameterization of the optical functions of amorphous materials in the interband region”, Appl. Phys. Lett., 69, 371 (1996).
[48] M. A. Hopcroft, W. D. Nix, and T.W. Kenny, “What is the Young’s modulus of silicon?”, J. Microelectromech. Syst. 19, 229 (2010).
[49] L. C. Kuo, “Strain energy in the coating material”, lab file, National Tsing Hua University (2019).
[50] L. C. Kuo, “公式整理” , lab file, National Tsing Hua University (2019).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以電漿輔助化學氣相沉積法鍍製氮氧化矽薄膜其光學特性與機械特性之探討
2. 熱退火對電漿輔助化學氣相沉積法鍍製之高含氧量氮氧化矽薄膜其光學特性與機械特性影響之探討
3. 探討應用於雷射干涉重力波偵測器之以電漿輔助化學氣相沈積法製備於矽懸臂之氮化矽薄膜之材料特性與機械損耗
4. 以電漿輔助化學氣相沈積法於矽懸臂沈積之氮化矽薄膜應力對機械損耗之影響暨機械損耗量測系統改善
5. 利用電漿輔助化學氣相沉積法鍍製四分之一波長厚度SiN0.40/SiO2堆疊之室溫機械損耗
6. 以電漿輔助化學氣相沉積法鍍製於矽懸臂之氮化矽其熱退火後對於室溫機械損耗之影響
7. 以電漿輔助化學氣相沉積法沉積氮化矽薄膜及其與二氧化矽之堆疊膜之低溫機械損耗
8. 以離子束濺鍍法製作低損耗薄膜應用於雷射干涉重力波偵測儀之高反射鏡製程準備
9. 光熱共光路干涉儀系統之設置與電漿輔助化學氣象沉積法沉積之氮化矽薄膜光學吸收研究
10. 不同披覆層之射頻高電子遷移率電晶體之元件製作
11. 利用電漿輔助化學氣相沉積法鍍製氮化矽與氮氧化矽薄膜建構光學吸收經驗公式
12. 評估氮化矽(SiNx )/氮氧化矽(SiOxNy)堆疊膜應用於雷射干涉重力波偵測器反射鏡之熱擾動效應與LPCVD-SiOxNy薄膜製程設計之研究
13. 以電漿輔助化學氣相沉積法鍍製高氮氮化矽薄膜其熱退火對光學特性與機械特性之影響
14. 以離子束濺鍍法鍍製氮化矽薄膜其光學特性之探討
15. 鍺離子佈植SiO2薄膜之非線性通道波導之研究
 
* *