|
[1] D. Abe, L. Marc, and D. Fredo. Unstructured Light Fields. Computer Graphics Forum, 31:305–314, May 2012. [2] E. Adelson and J. Bergen. The Plenoptic Function and the Elements of Early Vision, volume 2, chapter Models for Concurrency, pages 3–20. Computational Models of Visual Processing. Cambridge, MA: MIT Press (1991), 1991. [3] S. Altamimi and S. Shirmohammadi. QoE-Fair DASH Video Streaming Using Server-Side Reinforcement Learning. ACM Transacrions on Multimedia Computing, Communications, and Applications, 16(2s):68:1–68:21, 2020. [4] B. Attal, S. Ling, A. Gokaslan, C. Richardt, and J. Tompkin. Matryodshka: Real- Time 6DoF Video View Synthesis Using Multi-Sphere Images. In Proc. of European Conference on Computer Vision, pages 441–459, 2020. [5] S. Avidan and A. Shashua. Novel View Synthesis in Tensor Space. In Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR’97), pages 1034–1040, 1997. [6] W. Bennett, J. Neel, V. Vaibhav, T. Eino-Ville, A. Emilio, B. Adam, A. Andrew, H. Mark, and L. Marc. High Performance Imaging Using Large Camera Arrays. In Proc. of ACM Special Interest Group on Computer Graphics and Interactive Techniques Conference (SIGGRAPH’05), page 765–776, 2005. [7] A. Bentaleb, B. Taani, A. Begen, C. Timmerer, and R. Zimmermann. A Survey on Bitrate Adaptation Schemes for Streaming Media over HTTP. IEEE Communications Surveys Tutorials, 21(1):562–585, 2019. [8] blender. blender. 2021. Retrieved September 30, 2021 from https://www. blender.org/. [9] J. Boyce, R. Dor´e, A. Dziembowski, J. Fleureau, J. Jung, B. Kroon, B. Salahieh, V. K. M. Vadakital, and L. Yu. MPEG Immersive Video Coding Standard. IEEE Proceedings of the IEEE, 109(9):1521–1536, 2021. [10] Y. Chang, K. Chen, C. Wu, C. Ho, and C. Lei. Online Game QoE Evaluation Using Paired Comparisons. In Proc. of IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR’10), pages 1–6, 2010. [11] G. Chaurasia, S. Duchene, O. Sorkine-Hornung, and G. Drettakis. Depth Synthesis and Local Warps for Plausible Image-Based Navigation. ACM Transactions on Graphics (TOG), 32(3):1–12, 2013. [12] S. Chen. Quicktime VR: An Image-Based Approach to Virtual Environment Navigation. In Proc. of conference on Computer graphics and interactive techniques, pages 29–38, 1995. [13] S. Chen and L. Williams. View Interpolation for Image Synthesis. In Proc. of ACM Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’ 93), pages 279–288, 1993. [14] W. Chen, Y. Chang, S. Lin, L. Ding, and L. Chen. Efficient Depth Image Based Rendering with Edge Dependent Depth Filter and Interpolation. In Proc. of IEEE International Conference on Multimedia and Expo, pages 1314–1317, 2005. [15] B. Cheng, J. Yang, S. Wang, and J. Chen. Adaptive Video Transmission Control System Based on Reinforcement Learning Approach over Heterogeneous Networks. IEEE Transactions on Automation Science and Engineering, 12(3):1104– 1113, 2015. [16] F. Chiariotti, S. D’Aronco, L. Toni, and P. Frossard. Online Learning Adaptation Strategy for DASH Clients. In Proc. of ACM International Conference on Multimedia Systems (MMSys’16), pages 8:1–8:12, 2016. [17] C. Conti, L. Soares, and P. Nunes. Dense Light Field Coding: A Survey. IEEE Access, 8:49244–49284, March 2020. [18] X. Corbillon, F. Simone, G. Simon, and P. Frossard. Dynamic Adaptive Streaming for Multi-viewpoint Omnidirectional Videos. In Proc. of ACM International Conference on Multimedia Systems Conference (MMSys’18), pages 237–249, 2018. [19] L. Costero, A. Iranfar, M. Zapater, F. Igual, K. Olcoz, and D. Atienza. MAMUT: Multi-Agent Reinforcement Learning for Efficient Real-Time Multi-User Video Transcoding. In Proc. of IEEE Design, Automation Test in Europe Conference Exhibition (DATE’19), pages 558–563, 2019. [20] I. Curcio, K. Kammachi-Sreedhar, and S. Mate. Multi-Viewpoint and Overlays in the MPEG OMAF Standard. ITU Journal: ICT Discoveries, 3(1):17–24, 2020. [21] P. Debevec, C. Taylor, and J. Malik. Modeling and Rendering Architecture from Photographs: A Hybrid Geometry-and Image-Based Approach. In Proc. of conference on Computer graphics and interactive techniques, pages 11–20, 1996. [22] R. Dor´e and G. Lafruit. Updated Call for Test Materials for 3DoF+ Visual. International Organization for Standardization Meeting Document ISO/IEC JTC1/SC29/WG11 MPEG2018/N17617, 2018. [23] A. Dziembowski, J. Samelak, and M. Doma´nski. View Selection for Virtual View Synthesis in Free Navigation Systems. In Proc. of IEEE International Conference on Signals and Electronic Systems (ICSES’18), pages 83–87, 2018. [24] EPIC Games. Unreal Engine. 2021. Retrieved August 29, 2021 from https: //www.unrealengine.com/en-US/. [25] EPIC Games. Unreal Engine Marketplace. 2021. Retrieved August 29, 2021 from https://www.unrealengine.com/marketplace/en-US/store. [26] A. Eslami, J. Rezende, F. Besse, F. Viola, A. Morcos, M. Garnelo, A. Ruderman, A. Rusu, I. Danihelka, K. Gregor, et al. Neural Scene Representation and Rendering. Science, 360(6394):1204–1210, 2018. [27] C. Fan,W. Lo, Y. Pai, and C. Hsu. A Survey on 360° Video Streaming: Acquisition, Transmission, and Display. ACM Computing Surveys, 52(4):71:1–71:36, 2019. [28] C. Fehn. Depth-Image-Based Rendering (DIBR), Compression, and Transmission for a New Approach on 3D-TV. In Proc. SPIE 5291, Stereoscopic Displays and Virtual Reality Systems XI, pages 93–104, 2004. [29] J. Fleureau, B. Chupeau, F. Thudor, G. Briand, T. Tapie, and R. Dor´e. An Immersive Video Experience with Real-Time View Synthesis Leveraging the Upcoming MIV Distribution Standard. In Proc. of IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pages 1–2, 2020. [30] J. Fu, X. Chen, Z. Zhang, S.Wu, and Z. Chen. 360SRL: A Sequential Reinforcement Learning Approach for ABR Tile-Based 360 Video Streaming. In Proc. of IEEE International Conference on Multimedia and Expo (ICME’19), pages 290–295, 2019. [31] M. Gadaleta, F. Chiariotti, M. Rossi, and A. Zanella. D-DASH: A Deep Q-Learning Framework for DASH Video Streaming. IEEE Transactions on Cognitive Communications and Networking, 3(4):703–718, 2017. [32] G. Gescheider. Psychophysics: the Fundamentals. Psychology Press, 2013. [33] R. Ghaznavi-Youvalari and A. Aminlou. Geometry-Based Motion Vector Scaling for Omnidirectional Video Coding. In Proc. of IEEE International Symposium on Multimedia (ISM), pages 127–130, 2018. [34] A. Ghosh, V. Aggarwal, and F. Qian. A rate adaptation algorithm for tile-Based 360-degree video streaming. arXiv preprint arXiv:1704.08215, 2017. [35] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The Lumigraph. In Proc. of conference on Computer graphics and interactive techniques, pages 43–54, 1996. [36] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and A. Tabatabai. An Overview of Ongoing Point Cloud Compression Standardization Activities: Video- Based (V-PCC) and Geometry-Based (G-PCC). APSIPA Transactions on Signal and Information Processing, 9(0):e13, 2020. [37] M. Hannuksela, Y.Wang, and A. Hourunranta. An Overview of the OMAF Standard for 360 Video. In Proc. of IEEE Data compression conference (DCC), pages 418– 427, 2019. [38] P. Hedman, J. Philip, T. Price, J. Frahm, G. Drettakis, and G. Brostow. Deep Blending for Free-Viewpoint Image-Based Rendering. ACM Transactions on Graphics (TOG), 37(6):1–15, 2018. [39] J. Hooft, S. Petrangeli, M. Claeys, J. Famaey, and F. Turck. A learning-Based algorithm for improved bandwidth-awareness of adaptive streaming clients. In Proc. of IFIP/IEEE International Symposium on Integrated Network Management (IM’15), pages 131–138, 2015. [40] M. Hosseini, G. Kurillo, S. Etesami, and J. Yu. Towards coordinated bandwidth adaptations for hundred-scale 3D tele-immersive systems. Springer Multimedia Systems, 23(4):421–434, 2017. [41] HTC VIVE. HTC VIVE. 2019. Retrieved April 21, 2020 from https://www. vive.com/tw/product/vive. [42] J. Hu, W. Peng, and C. Chung. HEVC/H.265 Coding Unit Split Decision Using Deep Reinforcement Learning. In Proc. of IEEE International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS’17), pages 570–575, 2017. [43] J. Hu, W. Peng, and C. Chung. Reinforcement Learning for HEVC/H.265 Intra- Frame Rate Control. In Proc. of IEEE International Symposium on Circuits and Systems (ISCAS’18), pages 1–5, 2018. [44] J. Huang, Z. Chen, D. Ceylan, and H. Jin. 6-DOF VR Videos with A Single 360- Camera. In Proc. of IEEE Virtual Reality Conference (VR’17), pages 37–44, 2017. [45] T. Huang, R. Zhang, C. Zhou, and L. Sun. QARC: Video Quality Aware Rate Control for Real-Time Video Streaming Based on Deep Reinforcement Learning. In Proc. of ACM International Conference on Multimedia (MM’18), pages 1208–1216, 2018. [46] J. Jeong, S. Lee, I. Ryu, T. Le, and E. Ryu. Towards Viewport-Dependent 6DoF 360 Video Tiled Streaming for Virtual Reality Systems. In Proc. of ACM International Conference on Multimedia (MM’20), page 3687–3695, 2020. [47] X. Jiang, Y. Chiang, Y. Zhao, and Y. Ji. Plato: Learning-Based Adaptive Streaming of 360-Degree Videos. In Proc. of IEEE Conference on Local Computer Networks (LCN’18), pages 393–400, 2018. [48] J. Jung, B. Kroon, and J. Boyce. Common Test Conditions for Immersive Video. International Organization for Standardization Meeting Document ISO/IEC JTC1/SC29/WG11 MPEG/N18563, 2019. [49] N. Kalantari, T. Wang, and R. Ramamoorthi. Learning-Based view synthesis for light field cameras. ACM Transactions on Graphics (TOG), 35(6):1–10, 2016. [50] T. Kanade, P. Rander, and P. Narayanan. Virtualized Reality: Constructing Virtual Worlds from Real Scenes. IEEE multimedia, 4(1):34–47, 1997. [51] L. Kapov, M. Varela, T. Hoßfeld, and K. Chen. A Survey of Emerging Concepts and Challenges for QoE Management of Multimedia Services. ACM Transacrions on Multimedia Computing, Communications,and Application, 14(2s):29:1–29:29, 2018. [52] D. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In Proc. of International Conference on Learning Representationsnce Track (poster), 2015. [53] M. Levoy and P. Hanrahan. Light Field Rendering. In Proc. of conference on Computer graphics and interactive techniques, pages 31–42, 1996. [54] L. Li, Z. Li, X. Ma, H. Yang, and H. Li. Advanced Spherical Motion Model and Local Padding for 360° Video Compression. IEEE Transactions on Image Processing, 28(5):2342–2356, 2019. [55] L. Marc and H. Pat. Light Field Rendering. In Proc. of ACM Special Interest Group on Computer Graphics and Interactive Techniques Conference (SIGGRAPH’96), pages 31–42, 1996. [56] C. Maxim, L. Steven, F. Jeroen, and D. Filip. Design and Evaluation of a Self- Learning HTTP Adaptive Video Streaming Client. IEEE Communications Letters, 18(4):716–719, 2014. [57] L. McMillan and G. Bishop. Plenoptic Modeling: An Image-Based Rendering System. In Proc. of conference on Computer graphics and interactive techniques, pages 39–46, 1995. [58] B. Mildenhall, P. Srinivasan, R. Ortiz-Cayon, N. Kalantari, R. Ramamoorthi, R. Ng, and A. Kar. Local Light Field Fusion: Practical View Synthesis with Prescriptive Sampling Guidelines. ACM Transactions on Graphics (TOG), 38(4):1–14, 2019. [59] B. Mildenhall, P. Srinivasan, M. Tancik, J. Barron, R. Ramamoorthi, and R. Ng. Nerf: Representing Scenes as Neural Radiance Fields for View Synthesis. In Proc. of European conference on computer vision, pages 405–421, 2020. [60] MPEG. HM 16.16. 2019. Retrieved April 21, 2020 from https://hevc.hhi. fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.16/. [61] MPEG. Activity Report on Dense Light Fields. International Organization for Standardization Meeting Document ISO/IEC JTC1/SC29/WG11MPEG2020/N19493, 2020. [62] MPEG. MPEG roadmap. International Organization for Standardization Meeting Document ISO/IEC JTC1/SC29/WG11 MPEG/w19514, 2020. [63] MPEG. Text of ISO/IEC 23090-9 DIS Geometry-Based PCC. International Organization for Standardization Meeting Document ISO/IEC JTC1/SC29/WG11 MPEG2020/N19088, 2020. [64] MPEG. Text of ISO/IEC DIS 23090-5 Video-Based Point Cloud Compression. International Organization for Standardization Meeting Document ISO/IEC JTC1/SC29/WG11 MPEG2020/N18670, 2020. [65] MPEG. Text of ISO/IEC FDIS 23090-5 Visual Volumetric Video-Based Coding and Video-Based Point Cloud Compression. International Organization for Standardization Meeting Document ISO/IEC JTC1/SC29/WG11 MPEG/w19579, 2020. [66] MPEG. Text of ISO/IEC DIS 23090-12 MPEG Immersive Video. International Organization for Standardization Meeting Document ISO/IEC JTC1/SC29/WG11 MPEG/w20003, 2021. [67] K. Mueller, A. Smolic, K. Dix, P. Merkle, P. Kauff, and T.Wiegand. View Synthesis for Advanced 3D Video Systems. Springer EURASIP Journal on image and video processing, 2008(0):1–11, 2009. [68] P. Ndjiki-Nya, M. Koppel, D. Doshkov, H. Lakshman, P. Merkle, K. Muller, and T. Wiegand. Depth Image-Based Rendering with Advanced Texture Synthesis for 3-D Video. IEEE Transactions on Multimedia, 13(3):453–465, 2011. [69] H. Pang, C. Zhang, F. Wang, J. Liu, and L. Sun. Towards Low Latency Multiviewpoint 360° Interactive Video: A Multimodal Deep Reinforcement Learning Approach. In Proc. of IEEE Conference on Computer Communications (INFOCOM’ 19), pages 991–999, 2019. [70] R. Placket. The Analysis of Permutations. Journal of the Royal Statistical Society. Series C (Applied Statistics), 24(2):193–202, 1975. [71] B. Salahieh, S. Bhatia, and J. Boyce. Multi-Pass Add-on Tool for Coherent and Complete View Synthesis (US Patent 2019/0320164 A1), 2019. [72] B. Salahieh, B. Kroon, J. Jung, and M. Doma´nski. Test Model for Immersive Video. International Organization for Standardization Meeting Document ISO/IEC JTC1/SC29/WG11 MPEG2017/N16730, 2017. [73] B. Salahieh, B. Kroon, J. Jung, and M. Doma´nski. Test Model 2 for Immersive Video. International Organization for Standardization Meeting Document ISO/IEC JTC1/SC29/WG11 MPEG/N18577, 2019. [74] B. Salahieh, B. Kroon, J. Jung, and M. Doma´nski. Test Model 3 for Immersive Video. International Organization for Standardization Meeting Document ISO/IEC JTC1/SC29/WG11 MPEG/N18795, 2019. [75] B. Salahieh, B. Kroon, J. Jung, and M. Doma´nski. Test Model for Immersive Video. International Organization for Standardization Meeting Document ISO/IEC JTC1/SC29/WG11 MPEG/N18470, 2019. [76] S. Shah, D. Dey, C. Lovett, and A. Kapoor. Airsim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In Proc. of Field and Service Robotics, pages 621–635, 2018. [77] G. Sullivan, J. Ohm, W. Han, and T. Wiegand. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Transactions on Circuits and Systems for Video Technology, 22(12):1649–1668, 2012. [78] Y. Sun, A. Lu, and L. Yu. Weighted-to-Spherically-Uniform Quality Evaluation for Omnidirectional Video. IEEE Signal Processing Letters, 24(9):1408–1412, 2017. [79] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. A Bradford Book, 2 edition, 2018. [80] S. Tang, C. Hsu, Z. Tian, and X. Su. An Aerodynamic, Computer Vision, and Network Simulator for Networked Drone Applications. In Proc. of ACM International Conference on Mobile Computing and Networking (MobiCom’21) Poster Session, pages 0–0, 2022. [81] D. Tian, P. Lai, P. Lopez, and C. Gomila. View Synthesis Techniques for 3D Video. In Proc. of SPIE Conference on Applications of Digital Image Processing (ADIP’09), pages 74430T:1–74430T:11, 2009. [82] R. Tucker and N. Snavely. Single-View View Synthesis with Multiplane Images. In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 551–560, 2020. [83] B. Vishwanath, T. Nanjundaswamy, and K. Rose. Rotational motion model for temporal prediction in 360 video coding. In Proc. of IEEE International Workshop on Multimedia Signal Processing (MMSP), pages 1–6, 2017. [84] Y. Wang, D. Liu, S. Ma, F. Wu, and W. Gao. Spherical Coordinates Transform- Based Motion Model for Panoramic Video Coding. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9(1):98–109, 2019. [85] M. Wien, J. Boyce, T. Stockhammer, and W. Peng. Standardization Status of Immersive Video Coding. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9(1):5–17, 2019. [86] S.Wizadwongsa, P. Phongthawee, J. Yenphraphai, and S. Suwajanakorn. Nex: Real- Time View Synthesis with Neural Basis Expansion. In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8534–8543, 2021. [87] M. Xu, C. Li, S. Zhang, and P. Le Callet. State-of-the-art in 360 Video/Image Processing: Perception, Assessment and Compression. IEEE Journal of Selected Topics in Signal Processing, 14(1):5–26, 2020. [88] A. Yaqoob, T. Bi, and G.-M. Muntean. A Survey on Adaptive 360° Video Streaming: Solutions, Challenges and Opportunities. IEEE Communications Surveys Tutorials, 22(4):2801–2838, 2020. [89] Y. Zhang, P. Zhao, K. Bian, Y. Liu, L. Song, and X. Li. DRL360: 360-degree Video Streaming with Deep Reinforcement Learning. In Proc. of IEEE Conference on Computer Communications (INFOCOM’19), pages 1252–1260, 2019. [90] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. Stereo Magnification: Learning View Synthesis Using Multiplane Images. arXiv preprint arXiv:1805.09817, 2018. [91] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. Stereo Magnification: Learning View Synthesis Using Multiplane Images. ACM Transactions on Graphics (TOG), 37(4), 2018. [92] S. Zinger, L. Do, and P. de With. Free-Viewpoint Depth Image Based Rendering. Elsevier Journal of visual communication and image representation, 21(5-6):533– 541, 2010. [93] ZION Market Research. Virtual Reality (VR) Market by Hardware and Software for (Consumer, Commercial, Enterprise, Medical, Aerospace and Defense, Automotive, Energy and Others): Global Industry Perspective, Comprehensive Analysis and Forecast, 2016–2022. 2018. Retrieved April 21, 2020 from https://www. zionmarketresearch.com/report/virtual-reality-market. [94] L. Zitnick, S. Kang, M. Uyttendaele, S.Winder, and R. Szeliski. High-Quality Video View Interpolation Using a Layered Representation. ACM Transactions on Graphics (TOG), 23(3):600–608, 2004. |