|
[1] R. Gupta, R. Hosfelt, S. Sajeev, N. Patel, B. Goodman, J. Doshi, E. Heim, H. Choset, and M. Gaston, “xbd: A dataset for assessing building damage from satellite imagery,” 2019. [2] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” 2018. [3] H. Ritchie and M. Roser, “Natural disasters,” Our World in Data, 2014. https://ourworldindata.org/natural-disasters. Accessed: 2021-06-10. [4] NOAA National Centers for Environmental Information (NCEI), “U.S. billion-dollar weather and climate disasters,” 2021. https://www.ncdc.noaa.gov/billions/, DOI: 10.25921/stkw-7w73. Accessed: 2021-06-10. [5] M. Coronese, F. Lamperti, K. Keller, F. Chiaromonte, and A. Roventini, “Evi- dence for sharp increase in the economic damages of extreme natural disasters,” Proceedings of the National Academy of Sciences, vol. 116, no. 43, pp. 21450– 21455, 2019. [6] R. Eguchi, C. Huyck, S. Ghosh, B. Adams, and A. McMillan, Utilizing New Technologies in Managing Hazards and Disasters, pp. 295–323. 01 2010. [7] J. Z. Xu, W. Lu, Z. Li, P. Khaitan, and V. Zaytseva, “Building damage detection in satellite imagery using convolutional neural networks,” CoRR, vol. abs/1910.06444, 2019. [8] F. Nex, D. Duarte, F. G. Tonolo, and N. Kerle, “Structural building damage detection with deep learning: Assessment of a state-of-the-art cnn in operational conditions,” Remote Sensing, vol. 11, no. 23, 2019. [9] A. Vetrivel, M. Gerke, N. Kerle, F. Nex, and G. Vosselman, “Disaster damage detection through synergistic use of deep learning and 3d point cloud features derived from very high resolution oblique aerial images, and multiple-kernel- learning,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 140, pp. 45–59, 2018. Geospatial Computer Vision. [10] J. Z. Xu, W. Lu, Z. Li, P. Khaitan, and V. Zaytseva, “Building damage detection in satellite imagery using convolutional neural networks,” 2019. [11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org. [12] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 594–611, 2006. [13] G. R. Koch, “Siamese neural networks for one-shot image recognition,” 2015. [14] L. Fan, H. Liu, and Y. Hou, “An improved siamese network for face sketch recognition,” in 2019 International Conference on Machine Learning and Cybernetics (ICMLC), pp. 1–7, 2019. [15] N. Kerle, F. Nex, M. Gerke, D. Duarte, and A. Vetrivel, “Uav-based structural damage mapping: A review,” ISPRS International Journal of Geo-Information, vol. 9, no. 1, 2020. [16] L. Dong and J. Shan, “A comprehensive review of earthquake-induced building damage detection with remote sensing techniques,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 84, p. 85–99, 10 2013. [17] S. Koshimura, L. Moya, E. Mas, and Y. Bai, “Tsunami damage detection with remote sensing: A review,” Geosciences, vol. 10, no. 5, 2020. [18] M. Hoque, S. Phinn, and C. Roelfsema, “A systematic review of tropical cyclone disaster management research using remote sensing and spatial analysis,” Ocean |& Coastal Management, vol. 146, pp. 109–120, 09 2017. [19] R. Vatsavai, M. Tuttle, B. Bhaduri, E. Bright, A. Cheriyadat, V. Chandola, and J. Graesser, “Rapid damage assessment using high-resolution remote sensing imagery: Tools and techniques,” in 2011 IEEE International Geoscience and Remote Sensing Symposium, pp. 1445–1448, 2011. [20] W. Shi, M. Zhang, R. Zhang, S. Chen, and Z. Zhan, “Change detection based on artificial intelligence: State-of-the-art and challenges,” Remote Sensing, vol. 12, no. 10, 2020. [21] J. Su, Y. Bai, X. Wang, D. Lu, B. Zhao, H. Yang, E. Mas, and S. Koshimura, “Technical solution discussion for key challenges of operational convolutional neural network-based building-damage assessment from satellite imagery: Per- spective from benchmark xbd dataset,” Remote Sensing, vol. 12, no. 22, 2020. [22] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” 2015. [23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog- nition,” 2015. [24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255, Ieee, 2009. [25] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” 2016. [26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Pro- cessing Systems (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.), vol. 25, Curran Associates, Inc., 2012. [27] T. G. J. Rudner, M. Rußwurm, J. Fil, R. Pelich, B. Bischke, V. Kopackova, and P. Bilinski, “Multi3net: Segmenting flooded buildings via fusion of multiresolution, multisensor, and multitemporal satellite imagery,” 2018. [28] R. Gupta and M. Shah, “Rescuenet: Joint building segmentation and damage assessment from satellite imagery,” 2020. [29] J. Lee, J. Z. Xu, K. Sohn, W. Lu, D. Berthelot, I. Gur, P. Khaitan, Ke-Wei, Huang, K. Koupparis, and B. Kowatsch, “Assessing post-disaster damage from satellite imagery using semi-supervised learning techniques,” 2020. [30] S. Tilon, F. Nex, N. Kerle, and G. Vosselman, “Post-disaster building damage detection from earth observation imagery using unsupervised and transferable anomaly detecting generative adversarial networks,” Remote. Sens., vol. 12, p. 4193, 2020. [31] S. Dotel, A. Shrestha, A. Bhusal, R. Pathak, A. Shakya, and S. Panday, “Disas- ter assessment from satellite imagery by analysing topographical features using deep learning,” pp. 86–92, 03 2020. [32] J. Doshi, S. Basu, and G. Pang, “From satellite imagery to disaster insights,” 2018. [33] M. Bosch, C. Conroy, B. Ortiz, and P. Bogden, “Improving emergency response during hurricane season using computer vision,” 2020. [34] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional neural network,” in 2017 International Conference on Engineering and Technology (ICET), pp. 1–6, 2017. [35] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” 2015. [36] A. Mikołajczyk and M. Grochowski, “Data augmentation for improving deep learning in image classification problem,” in 2018 International Interdisci- plinary PhD Workshop (IIPhDW), pp. 117–122, 2018. [37] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Ter- zopoulos, “Image segmentation using deep learning: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2021. [38] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” 2017. [39] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2.” https: //github.com/facebookresearch/detectron2, 2019. [40] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable convolutional networks,” 2017. [41] M. D. Li, K. Chang, B. Bearce, C. Y. Chang, A. J. Huang, J. P. Campbell, J. M. Brown, P. Singh, K. V. Hoebel, D. Erdoğmuş, S. Ioannidis, W. E. Palmer, M. F. Chiang, and J. Kalpathy-Cramer, “Siamese neural networks for contin- uous disease severity evaluation and change detection in medical imaging,” npj Digital Medicine, vol. 3, p. 48, Mar 2020. [42] Y. Guo and L. Zhang, “One-shot face recognition by promoting underrepre- sented classes,” 2018. [43] N. O’Mahony, S. Campbell, A. Carvalho, L. Krpalkova, G. V. Hernandez, S. Harapanahalli, D. Riordan, and J. Walsh, “One-shot learning for custom identification tasks; a review,” Procedia Manufacturing, vol. 38, pp. 186–193, 2019. 29th International Conference on Flexible Automation and Intelligent Manufacturing ( FAIM 2019), June 24-28, 2019, Limerick, Ireland, Beyond In- dustry 4.0: Industrial Advances, Engineering Education and Intelligent Manu- facturing. [44] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De- Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning li- brary,” in Advances in Neural Information Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran Associates, Inc., 2019. [45] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco: Common objects in context,” 2015. [46] T. DeVries and G. W. Taylor, “Improved regularization of convolutional neural networks with cutout,” 2017. [47] [48] E. K. V. I. I. A. Buslaev, A. Parinov and A. A. Kalinin, “Albumentations: fast and flexible image augmentations,” ArXiv e-prints, 2018. [49] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards removing the curse of dimensionality,” in Proceedings of the Thirtieth Annual ACM Sym- posium on Theory of Computing, STOC ’98, (New York, NY, USA), p. 604– 613, Association for Computing Machinery, 1998. [50] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with gpus,” arXiv preprint arXiv:1702.08734, 2017. [51] N. Kokhlikyan, V. Miglani, M. Martin, E. Wang, B. Alsallakh, J. Reynolds, A. Melnikov, N. Kliushkina, C. Araya, S. Yan, and O. Reblitz-Richardson, “Captum: A unified and generic model interpretability library for pytorch,” 2020. [52] S. Lundberg and S.-I. Lee, “A unified approach to interpreting model predic- tions,” 2017.
|