|
[1] M. A. Richards, J. A. Scheer, and W. A. Holm, "Constant false alarm rate detectors," in Principles of modern radar, Raleigh, NC: SciTech Publishing, 2010, pp. 589–620. [2] A. Jalil, H. Yousaf, and M. I. Baig, "Analysis of cfar techniques," in Proc. 13th Int. Bhurban Conf. Appl. Sci. Technol. (IBCAST), Jan. 2016, pp. 654–659. [3] V. G. Hansen and J. H. Sawyers, "Detectability loss due to greatest of selection in a cell-averaging cfar," IEEE Trans. Aerosp. Electron. Syst., vol. AES-16, no. 1, pp. 115–118, Jan. 1980. [4] G. V. Trunk, "Range resolution of targets using automatic detectors," IEEE Trans. Aeros. Electron. Syst., vol. AES-14, no. 5, pp. 750–755, Sept. 1978. [5] H. Rohling, "Radar cfar thresholding in clutter and multiple target situations," IEEE Trans. Aerosp. Electron. Syst., vol. AES-19, no. 4, pp. 608–621, Jul. 1983. [6] J. T. Rickard and G. M. Dillard, "Adaptive detection algorithms for multiple-target situations," IEEE Trans. Aeros. Electron. Syst., vol. AES-13, no. 4, pp. 338–343, July 1977. [7] C. Lin, Y. Lin, Y. Bai, W. Chung, T. Lee, and H. Huttunen, "Dl-cfar: a novel cfar target detection method based on deep learning," 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, Sept. 2019. [8] J. Redmon and A. Farhadi, "Yolov3: an incremental improvement," Apr. 2018, arXiv:1804.02767. [Online]. Available: https://arxiv.org/abs/1804.02767 [9] A. G. Stove, "Linear fmcw radar techniques," IEE Proc. F Radar Signal Process., vol. 139, no. 5, pp. 343–350, Oct. 1992. [10] J. Fink and F. K. Jondral, "Comparison of ofdm radar and chirp sequence radar", 2015 16th Int. Radar Symp., pp. 315-320, 2015. [11] A. Wojtkiewicz, J. Misiurewicz, M. Nalecz, K. Jedrzejewski, and K. Kulpa, "Two-dimensional signal processing in fmcw radars," in Proc. 20th KKTOiUE, Warszawa, Poland, 1996, pp. 475–480. [12] M. Kronauge and H. Rohling, "New chirp sequence radar waveform," IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 4, pp. 2870–2877, Oct. 2014. [13] D. Giannoulis, M. Massberg, and J. D. Reiss, "Parameter automation in a dynamic range compressor," J. Audio Eng. Soc., vol. 61, no. 10, Oct. 2013. [14] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, "Object detection with deep learning: a review," IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 11, pp. 3212–3232, Nov. 2019. [15] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: unified, real-time object detection," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), June 2016, pp. 779–788. [16] J. Redmon and A. Farhadi, "Yolo9000: better, faster, stronger," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 6517–6525. [17] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: towards real-time object detection with region proposal networks," IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017. [18] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 770–778. [19] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, "Feature pyramid networks for object detection," in Proc. CVPR, 2017, pp. 936–944. [20] Y. L. Sit and T. Zwick, "Automotive mimo ofdm radar: subcarrier allocation techniques for multiple-user access and doa estimation," in 11th European Radar Conf., Oct. 2014, pp. 153–156. |