帳號:guest(18.116.60.10)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃信源
作者(外文):Huang, Sin-Yuan
論文名稱(中文):非完美通道估測情境下之巨量MIMO-NOMA下行系統的聯合功率分配、預編碼與解碼技術
論文名稱(外文):Joint Power Allocation, Precoding, and Decoding for Downlink Massive MIMO-NOMA Systems with Imperfect Channel Estimation
指導教授(中文):王晉良
指導教授(外文):Wang, Chin-Liang
口試委員(中文):陳永芳
古聖如
黃昱智
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:108064530
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:41
中文關鍵詞:非正交多重接取非完美通道估測功率分配預編碼器解碼器巨量多輸入多輸出
外文關鍵詞:non-orthogonal multiple accessimperfect channel estimationpower allocationprecoderdecodermassive MIMONOMA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:428
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本論文中,我們考慮包含一個基地台和K個使用者群組的下行巨量多輸入多輸出非正交多重接取(MIMO-NOMA)系統,其中每一群組由兩個使用者組成,並提出一迭代式聯合功率分配、預編碼和解碼技術,以適用於非完美通道估測情境。在給定通道估測值和通道估測誤差資訊的情況下,我們首先利用區塊對角化技術設計K個群組預編碼器以消除群組間的干擾;這些群組預編碼器可將一個K群組MIMO-NOMA通道分解為K個平行的單群組MIMO-NOMA通道,也因此原先的多群組設計問題可簡化成單群組設計問題。針對單一群組,使用者功率分配因子可藉由最小化最大的解碼訊息均方誤差求得,對應的解碼器可透過最小化解碼訊息均方誤差來設計,而對應的預編碼器則可在基地台功率限制情況下進行設計,以最小化系統中所有使用者的解碼訊息均方誤差總和;所設計的功率分配因子、預編碼器和解碼器可採迭代方式進行更新,直至收斂。電腦模擬結果顯示,相較於未考慮通道估測誤差資訊的相關設計方式,所提出的聯合設計技術可大幅改善系統的位元錯誤率,其中功率分配的效益會隨著群組內之兩個使用者間的通道增益差增大而更加顯著。
In this thesis, a downlink massive multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) system is considered that consists of a base station and K clusters of two users each. An iterative design method is then proposed for joint power allocation, precoding, and decoding under imperfect channel estimation. Given channel estimates and the channel error information, K precoders are designed, one for each cluster, based on block diagonalization to eliminate inter-cluster interference. With these precoders, a K-cluster MIMO-NOMA channel can be decomposed into K parallel single-cluster MIMO-NOMA channels, and the original multi-cluster design problem is simplified to a single-cluster design problem. For a single cluster, a power allocation factor between both users is derived by minimizing the maximum mean-squared error (MSE) of the decoded signals inside the cluster, while the corresponding decoders and precoder are derived respectively by minimizing the MSE at each user’s receiver and by minimizing the sum of MSEs of all the users in the system under a power constraint. The derived power allocation factor, precoder, and decoders for a single cluster are iteratively updated until convergence. Computer simulation results demonstrate that the proposed joint design method can significantly improve the bit-error-rate performance as compared with a previous related design without taking the channel error information into account, where the benefit of power allocation would be more notable with an increase of the channel gain difference between the two users in a cluster.
Abstract i
Contents ii
List of Figures iii
List of Tables iv
I.Introduction.......................................................1
II.System Model......................................................5
III.Propsoed Methods.................................................9
A.Inter-cluster Interference Cancellation............................9
B.Imperfect Successive Interference Cancellation....................11
C.MMSE Decoder Design...............................................13
D.Power Allocation..................................................16
E.MMSE Precoder Design..............................................20
F.Iterative Design of Power Allocation, Precoding, and Decoding.....22
G.Complexity Analysis of the Iterative Design.......................23
IV.Simulation Results...............................................25
V.Conclusion........................................................36
Appendix............................................................37
References..........................................................38
[1] S. M. R. Islam, N. Avazov, O. A. Dobre, and K. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges,” IEEE Commun. Surv. Tutor., vol. 19, no. 2, pp. 721–742, Oct. 2017.
[2] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future radio access,” in Proc. IEEE 77th Veh. Technol. Conf. (VTC-Spring), Dresden, Germany, Jun. 2013, pp. 1–5.
[3] Y. Saito, A. Benjebbour, Y. Kishiyama, and T. Nakamura, “System-level performance evaluation of downlink non-orthogonal multiple access (NOMA),” in Proc. IEEE 24th Annual Int. Symp. Pers. Indoor Mob. Radio Commun. (PIMRC), London, UK, Nov. 2013, pp. 611–615.
[4] Y. Liu, G. Pan, H. Zhang, and M. Song, “On the capacity comparison between MIMO-NOMA and MIMO-OMA,” IEEE Access, vol. 4, pp. 2123–2129, May 2016.
[5] M. Zeng, A. Yadav, O. A. Dobre, G. I. Tsiropoulos, and H. V. Poor, “On the sum rate of MIMO-NOMA and MIMO-OMA Systems,” IEEE Wireless Commun. Lett., vol. 6, no. 4, pp. 534–537, Aug. 2017.
[6] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun., vol. 10, no. 6, pp. 585–598, Nov. 1999.
[7] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 461–471, Feb. 2004.
[8] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.
[9] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview of massive MIMO: Benefits and challenges,” IEEE J. Sel. Topics Signal Process, vol. 8, no. 5, pp. 742–758, Oct. 2014.
[10] Q. Sun, S. Han, C. I, and Z. Pan, “On the ergodic capacity of MIMO NOMA systems,” IEEE Wireless Commun. Lett., vol. 4, no. 4, pp. 405–408, Aug. 2015.
[11] M. Zeng, A. Yadav, O. A. Dobre, G. I. Tsiropoulos, and H. V. Poor, “Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster,” IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2413–2424, Oct. 2017.
[12] Z. Ding and H. V. Poor, “Design of massive-MIMO-NOMA with limited feedback,” IEEE Signal Process. Lett., vol. 23, no. 5, pp. 629–633, May 2016.
[13] J.-J. Zheng, “Joint power allocation, precoding, and decoding for downlink massive MIMO non-orthogonal multiple access systems,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2016.
[14] Q. Zhang, Q. Li, and J. Qin, “Robust beamforming for nonorthogonal multiple-access systems in MISO channels,” IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 10231–10236, Dec. 2016.
[15] F. Alavi, K. Cumanan, Z. Ding, and A. G. Burr, “Robust beamforming techniques for non-orthogonal multiple access systems with bounded channel uncertainties,” IEEE Commun. Lett., vol. 21, no. 9, pp. 2033–2036, Sep. 2017.
[16] J. Cui, Z. Ding, and P. Fan, “Outage probability constrained MIMO-NOMA designs under imperfect CSI,” IEEE Trans. Wireless Commun., vol. 17, no. 12, pp. 8239–8255, Dec. 2018.
[17] W. A. Al-Hussaibi and F. H. Ali, “A closed-form approximation of correlated multiuser MIMO ergodic capacity with antenna selection and imperfect channel estimation,” IEEE Trans. Veh. Technol., vol. 67, no. 6, pp. 5515–5519, Jun. 2018.
[18] B. Nosrat-Makouei, J. G. Andrews, and R. W. Heath, “MIMO interference alignment over correlated channels with imperfect CSI,” IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2783–2794, Jun. 2011.
[19] T. Yoo, E. Yoon, and A. Goldsmith, “MIMO capacity with channel uncertainty: Does feedback help?,” in Proc. IEEE Glob. Telecommun. Conf. (GLOBECOM), Dallas, TX, USA, vol. 1, Nov. 2004, pp. 96–100.
[20] A. Adhikary, J. Nam, J.-Y. Ahn, and G. Caire, “Joint spatial division and multiplexing: The large-scale array regime,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6441–6463, Oct. 2013.
[21] T. Yoo and A. Goldsmith, “Capacity and power allocation for fading MIMO channels with channel estimation error,” IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2203–2214, May 2006.
[22] S. Roy and P. Fortier, “Maximal-ratio combining architectures and performance with channel estimation based on a training sequence,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 1154–1164, Jul. 2004.
[23] A. S. de Sena, F. R. M. Lima, D. B. da Costa, Z. Ding, P. H. J. Nardelli, U. S. Dias, and C. B. Papadias , “Massive MIMO-NOMA networks with imperfect SIC: Design and fairness enhancement,” IEEE Trans. Wireless Commun., vol. 19, no. 9, pp. 6100–6115, Sep. 2020.
[24] Z. Yang, Z. Ding, P. Fan, and G. K. Karagiannidis, “On the performance of non-orthogonal multiple access systems with partial channel information,” IEEE Trans. Commun., vol. 64, no. 2, pp. 654–667, Feb. 2016.
[25] D. Tweed and T. Le-Ngoc, “Dynamic resource allocation for uplink MIMO NOMA VWN with imperfect SIC,” in Proc. IEEE Int. Conf. Commun. (ICC), Kansas City, MO, USA, May 2018, pp. 1–6.
[26] K. B. Petersen and M. S. Petersen. (2012, Nov. 15). The Matrix Cookbook [Online]. Available: http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274
[27] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.
[28] A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal mutiple access (NOMA) for future radio access,” in Proc. Int. Symp. Intell. Signal Process. Commun. Syst. (ISPACS), Okinawa, Japan, Nov. 2013, pp. 770–774.
[29] R. Burden and J. D. Faires, Numerical Analysis. Florence, KY: Brooks/Cole, 2001.
[30] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD, USA: Johns Hopkins University Press, 1996.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *