帳號:guest(3.145.111.115)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張光毅
作者(外文):Chang, Kuang-Yi
論文名稱(中文):共同標記圖的兩個子圖中的確定性交會問題
論文名稱(外文):Deterministic Rendezvous in Two Subgraphs of a Commonly Labelled Graph
指導教授(中文):張正尚
指導教授(外文):Chang, Cheng-Shang
口試委員(中文):楊谷章
李端興
許健平
口試委員(外文):Yang, Guu-Chang
Lee, Duan-Shin
Sheu, Jang-Ping
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:108064526
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:46
中文關鍵詞:交會搜索多通道會合認知無線電網路
外文關鍵詞:Rendezvous searchmultichannel rendezvouscognitive radio networks
相關次數:
  • 推薦推薦:0
  • 點閱點閱:171
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
從感知無線網路中的兩個次要用戶在公用控制通道設定的技術當中獲得啟發,我們
考慮在一個有限且相連的無向圖中的兩個使用者的交會搜索問題。在我們的題目中,兩個使用者對於圖上的節點與邊的標示皆相同。時間劃分成時槽,並且兩個使用者的時間並不同步。每個使用者有一個子圖做為其移動範圍,且只有該使用者自己知道。在每個時槽中,每個使用者可以沿著其在子圖中的邊移動到相鄰的節點,或是停留在現在的節點上。若兩個使用者在同一個時槽時停留在同一個節點,我們就將其稱作交會,而在交會前所經過的時槽個數,我們稱作為交會時間 (time-to-rendezvous, TTR)。當兩個使用者的子圖交集不為空集合時,我們提出了數個確定性的交會演算法來限制其最大交會時間 (maximum TTR, MTTR),特別是我們證明對於任意有 N 個節點的圖,其最大交會時間將可以被限制在 O(N2log N) 內。而對於特殊拓樸的圖形,如線圖、環以及樹等,其最大交會時間將可以被限制在 O(N)。我們的研究結果也可以延伸至局部標示的圖且使用者有不同的 ID 的情況。在使用者有 LbitsID 的情況下,我們證明在任意的有 N 節點的圖上最大交會時間可以被限制在 O(N2L),在樹與環上則可將最大交會時間限制在 O(NL)。
Motivated by the need to set up a common control channel between two secondary users in a cognitive radio network, we consider the two-user rendezvous search problem in a finite, connected and undirected graph. The labels of nodes and edges in the graph are the same for the two users. Time is partitioned into time slots and the clocks of the two users are not synchronized. Each user is assigned with a subgraph that is only known to itself. In every
time slot, a user can either move along an edge in its subgraph from its current node to another neighboring node or stay in its current node. Two users rendezvous when they are at the same node at the same time. The number of time slots needed for the two users to rendezvous is called the time-to-rendezvous (TTR). As long as the intersection of the two subgraphs is not empty, we propose various deterministic rendezvous algorithms to bound the maximum TTR (MTTR). In particular, we show that the MTTR can be bounded within O(N2log N) time slots for any arbitrary graph with N nodes. For special graphs, including line graphs, rings and trees, the MTTR bounds can be further reduced to O(N). Our results can also be extended to locally labelled graphs with distinct IDs. In that setting, we show the MTTR bounds are O(N2L) for general graphs and O(NL) for trees and rings, where L is the number of bits of an ID.
Contents 1
List of Figures 3
List of Tables 4
1 Introduction 5
2 General graphs 10
2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The homogeneous setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 The heterogeneous and asymmetric setting . . . . . . . . . . . . . . . . . . . . 12
2.4 The heterogeneous and symmetric setting . . . . . . . . . . . . . . . . . . . . 15
3 Special graphs 20
3.1 Line graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Locally labelled graphs with distinct user IDs 34
4.1 Locally labelled trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Locally labelled rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5 Conclusion 41
[1] E. J. Anderson and R. Weber, “The rendezvous problem on discrete locations,” Journal of Applied Probability, pp. 839–851, 1990.
[2] S. Alpern and S. Gal, The theory of search games and rendezvous. Springer, 2003, vol. 55.
[3] P. Bahl, R. Chandra, and J. Dunagan, “Ssch: slotted seeded channel hopping for capacity improvement in ieee 802.11 ad-hoc wireless networks,” in Proceedings of the 10th annual international conference on Mobile computing and networking. ACM, 2004, pp. 216–230.
[4] L. A. DaSilva and I. Guerreiro, “Sequence-based rendezvous for dynamic spectrum access,” in New Frontiers in Dynamic Spectrum Access Networks, 2008. DySPAN 2008. 3rd IEEE Symposium on. IEEE, 2008, pp. 1–7.
[5] Y. R. Kondareddy and P. Agrawal, “Synchronized mac protocol for multi-hop cognitive radio networks,” in 2008 IEEE International Conference on Communications, 2008, pp. 3198–3202.
[6] K. Bian, J.-M. Park, and R. Chen, “A quorum-based framework for establishing control
channels in dynamic spectrum access networks,” in Proceedings of the 15th annual international conference on Mobile computing and networking. ACM, 2009, pp. 25–36.
[7] C.-F. Shih, T. Y. Wu, and W. Liao, “Dh-mac: a dynamic channel hopping mac protocol for cognitive radio networks,” in Communications (ICC), 2010 IEEE International Conference on. IEEE, 2010, pp. 1–5.
[8] J. Shin, D. Yang, and C. Kim, “A channel rendezvous scheme for cognitive radio networks,” Communications Letters, IEEE, vol. 14, no. 10, pp. 954–956, 2010.
[9] D. Yang, J. Shin, and C. Kim, “Deterministic rendezvous scheme in multichannel access networks,” Electronics Letters, vol. 46, no. 20, pp. 1402–1404, 2010.
[10] N. C. Theis, R. W. Thomas, and L. A. DaSilva, “Rendezvous for cognitive radios,” Mobile Computing, IEEE Transactions on, vol. 10, no. 2, pp. 216–227, 2011.
[11] F. Hou, L. X. Cai, X. Shen, and J. Huang, “Asynchronous multichannel mac design with difference-set-based hopping sequences,” IEEE Transactions on Vehicular Technology,
vol. 60, no. 4, pp. 1728–1739, 2011.
[12] K. Bian and J.-M. Park, “Maximizing rendezvous diversity in rendezvous protocols for decentralized cognitive radio networks,” IEEE Transactions on Mobile Computing,
vol. 12, no. 7, pp. 1294–1307, 2013.
[13] Z. Lin, H. Liu, X. Chu, and Y.-W. Leung, “Enhanced jump-stay rendezvous algorithm for cognitive radio networks,” IEEE Communications Letters, vol. 17, no. 9, pp. 1742–1745,
2013.
[14] Z. Gu, Q.-S. Hua, Y. Wang, and F. C. Lau, “Nearly optimal asynchronous blind rendezvous algorithm for cognitive radio networks,” in 2013 IEEE International Conference on Sensing, Communications and Networking (SECON), 2013, pp. 371–379.
[15] G.-Y. Chang and J.-F. Huang, “A fast rendezvous channel-hopping algorithm for cognitive radio networks,” IEEE Communications Letters, vol. 17, no. 7, pp. 1475–1478, 2013.
[16] Z. Gu, Q.-S. Hua, and W. Dai, “Local sequence based rendezvous algorithms for cognitive
radio networks,” in 2014 Eleventh Annual IEEE International Conference on Sensing,
Communication, and Networking (SECON), 2014, pp. 194–202.
[17] Z. Gu, Q.-S. Hua, Y. Wang, and F. C. Lau, “Oblivious rendezvous in cognitive radio networks,” in Structural Information and Communication Complexity), 2014, pp. 165–179.
[18] S. Chen, A. Russell, A. Samanta, and R. Sundaram, “Deterministic blind rendezvous in cognitive radio networks,” in 2014 IEEE 34th International Conference on Distributed Computing Systems, 2014, pp. 358–367.
[19] L. Yu, H. Liu, Y.-W. Leung, X. Chu, and Z. Lin, “Channel-hopping based on available channel set for rendezvous of cognitive radios,” in 2014 IEEE International Conference on Communications (ICC), 2014, pp. 1573–1579.
[20] I.-H. Chuang, H.-Y. Wu, and Y.-H. Kuo, “A fast blind rendezvous method by alternate hop-and-wait channel hopping in cognitive radio networks,” IEEE Transactions on Mobile Computing, vol. 13, no. 10, pp. 2171–2184, 2014.
[21] G.-Y. Chang, W.-H. Teng, H.-Y. Chen, and J.-P. Sheu, “Novel channel-hopping schemes for cognitive radio networks,” IEEE Transactions on Mobile Computing, vol. 13, no. 2, pp. 407–421, 2014.
[22] Z. Gu, Q.-S. Hua, and W. Dai, “Fully distributed algorithms for blind rendezvous in cognitive radio networks,” in Proceedings of the 15th ACM International Symposium on Mobile Ad Hoc Networking and Computing. ACM, 2014, p. 155–164.
[23] L. Chen, K. Bian, L. Chen, C. Liu, J.-M. J. Park, and X. Li, “A group-theoretic framework for rendezvous in heterogeneous cognitive radio networks,” in Proceedings of the 15th ACM International Symposium on Mobile Ad Hoc Networking and Computing. ACM, 2014, p. 165–174.
[24] M. J. Abdel-Rahman, H. Rahbari, and M. Krunz, “Multicast rendezvous in fast-varying dsa network,” IEEE Transactions on Mobile Computing, vol. 14, no. 7, pp. 1449–1462, 2015.
[25] C.-S. Chang, W. Liao, and C.-M. Lien, “On the multichannel rendezvous problem: fundamental limits, optimal hopping sequences, and bounded time-to-rendezvous,” Mathematics of Operations Research, vol. 40, no. 1, pp. 1–23, 2014.
[26] G.-Y. Chang, J.-F. Huang, and Y.-S. Wang, “Matrix-based channel hopping algorithms for cognitive radio networks,” IEEE Transactions on Wireless Communications, vol. 14, no. 5, pp. 2755–2768, 2015.
[27] Z. Gu, H. Pu, Q.-S. Hua, and F. C. M. Lau, “Improved rendezvous algorithms for heterogeneous cognitive radio networks,” in 2015 IEEE Conference on Computer Communications (INFOCOM), 2015, pp. 154–162.
[28] C.-S. Chang, W. Liao, T.-Y. Wu, C.-S. Chang, W. Liao, and T.-Y. Wu, “Tight lower bounds for channel hopping schemes in cognitive radio networks,” IEEE/ACM Transactions on Networking (TON), vol. 24, no. 4, pp. 2343–2356, 2016.
[29] C.-S. Chang, C.-Y. Chen, D.-S. Lee, and W. Liao, “Efficient encoding of user ids for nearly optimal expected time-to-rendezvous in heterogeneous cognitive radio networks,” IEEE/ACM Transactions on Networking, vol. 25, no. 6, pp. 3323–3337, 2017.
[30] Y.-C. Chang, C.-S. Chang, and J.-P. Sheu, “An enhanced fast multi-radio rendezvous algorithm in heterogeneous cognitive radio networks,” IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 4, pp. 847–859, 2018.
[31] Z. Gu, Y. Wang, Q.-S. Hua, and F. C. M. Lau, em Rendezvous in Distributed Systems: Theory, Algorithms and Applications. Springer, 2017.
[32] C.-S. Chang, D.-S. Lee, and W. Liao, “A tutorial on multichannel rendezvous in cognitive radio networks,” in Cognitive Radio Networks: Performance, Applications and Technology. Nova Science Publisher, 2018, ch. 1.
[33] A. Pelc, “Deterministic rendezvous in networks: A comprehensive survey,” Networks, vol. 59, no. 3, pp. 331–347, 2012.
[34] A. Dessmark, P. Fraigniaud, D. R. Kowalski, and A. Pelc, “Deterministic rendezvous in graphs,” Algorithmica, vol. 46, no. 1, pp. 69–96, 2006.
[35] D. R. Kowalski and A. Malinowski, “How to meet in anonymous network,” Theoretical Computer Science, vol. 399, no. 1-2, pp. 141–156, 2008.
[36] A. Ta-Shma and U. Zwick, “Deterministic rendezvous, treasure hunts, and strongly universal exploration sequences,” ACM Trans. Algorithms, vol. 10, no. 3, 2014.
[37] Y.-C. Chang, C.-S. Chang, and J.-P. Sheu, “A quasi-random algorithm for anonymous rendezvous in heterogeneous cognitive radio networks,” National Tsing Hua University,
Tech. Rep., 2018.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *