|
[1] R. Harle, "A Survey of Indoor Inertial Positioning Systems for Pedestrians", IEEE Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1281-1293, 2013. [2] P. Davidson, and R. Piché, "A Survey of Selected Indoor Positioning Methods for Smartphones", IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 1347-1370, 2017. [3] P. Myung Chul, V. V. Chirakkal, and H. Dong Seog, "Robust pedestrian dead reckoning for indoor positioning using smartphone", IEEE International Conference on Consumer Electronics (ICCE), pp. 80-81, .2015. [4] L. Hsu, Y. Gu, Y. Huang, and S. Kamijo, "Urban Pedestrian Navigation Using Smartphone-Based Dead Reckoning and 3-D Map-Aided GNSS", IEEE Sensors Journal, vol. 16, no. 5, pp. 1281-1293, 2016. [5] C. Jiang, L. Xue, H. Chang, G. Yuan, and W. Yuan, "Signal Processing of MEMS Gyroscope Arrays to Improve Accuracy Using a 1st Order Markov for Rate Signal Modeling", Sensors (Basel, Switzerland), vol. 12, pp. 1720-37, 2012. [6] B. Shin et al., "Motion Recognition-Based 3D Pedestrian Navigation System Using Smartphone", IEEE Sensors Journal, vol. 16, no. 18, pp. 6977-6989, 2016. [7] R. Zhou, "Pedestrian dead reckoning on smartphones with varying walking speed", 2016 IEEE International Conference on Communications (ICC), pp. 1-6, 2016. [8] P. Savage, "Strapdown Inertial Navigation Integration Algorithm Design Part 1: Attitude Algorithms", Journal of Guidance Control and Dynamics, vol. 21, pp. 19-28, 1998. [9] T. Qin, P. Li, and S. Shen, "VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator", IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1004-1020, 2018. [10] R. Clark, S. Wang, H. Wen, A. Markham, and A. Trigoni, "VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem", in AAAI, 2017. [11] S. Wang, R. Clark, H. Wen, and A. Trigoni, "DeepVO: Towards end-to-end visual odometry with deep Recurrent Convolutional Neural Networks", 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2043-2050, 2017. [12] C. Chen, C. X. Lu, J. Wahlström, A. Markham, and N. Trigoni, "Deep Neural Network Based Inertial Odometry Using Low-Cost Inertial Measurement Units", IEEE Transactions on Mobile Computing, vol. 20, no. 4, pp. 1351-1364, 2021. [13] J. P. Silva do Monte Lima, H. Uchiyama, and R.-i. Taniguchi, "End-to-End Learning Framework for IMU-Based 6-DOF Odometry", Sensors, vol. 19, no. 17, 2019. [14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors", Nature, vol. 323, no. 6088, pp. 533-536, 1986 [15] G. Hinton, "Learning multiple layers of representation", Trends in cognitive sciences, vol. 11, pp. 428-34, 2007. [16] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory", Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997. [17] Y. O. Ouma, R. Cheruyot, and A. N. Wachera, "Rainfall and runoff time-series trend analysis using LSTM recurrent neural network and wavelet neural network with satellite-based meteorological data: case study of Nzoia hydrologic basin", Complex & Intelligent Systems, 2021. [18] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks", IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681, 1997. [19] M. Jokar and F. Semperlotti, "Finite Element Network Analysis: A Machine Learning based Computational Framework for the Simulation of Physical Systems", 2020. [20] A. Graves and J. Schmidhuber, "Framewise phoneme classification with bidirectional LSTM and other neural network architectures", Neural Networks, vol. 18, no. 5, pp. 602-610, 2005. [21] Z. Cui, R. Ke, Z. Pu, and Y. Wang, "Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network for Forecasting Network-wide Traffic State with Missing Values", ArXiv, vol. abs/2005.11627, 2020. [22] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, "Recurrent Models of Visual Attention", in NIPS, 2014. [23] W. Yin, S. Ebert, and H. Schütze, "Attention-Based Convolutional Neural Network for Machine Comprehension", ArXiv, vol. abs/1602.04341, 2016. [24] A. Vaswani et al., "Attention is All you Need", ArXiv, vol. abs/1706.03762, 2017. [25] Q. Tian, Z. Salcic, K. I. Wang, and Y. Pan, "A Multi-Mode Dead Reckoning System for Pedestrian Tracking Using Smartphones", IEEE Sensors Journal, vol. 16, no. 7, pp. 2079-2093, 2016. [26] J. Hausdorff, "Gait dynamics, fractals and falls: Finding meaning in the stride-to-stride fluctuations of human walking", Human movement science, vol. 26, pp. 555-89, 2007. [27] J. Scarlett, "Enhancing the performance of pedometers using a single accelerometer", 2007. [28] C. Chen, P. Zhao, C. X. Lu, W. Wang, A. Markham, and A. Trigoni, "Deep-Learning-Based Pedestrian Inertial Navigation: Methods, Datfa Set, and On-Device Inference", IEEE Internet of Things Journal, vol. 7, pp. 4431-4441, 2020. [29] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, "A benchmark for the evaluation of RGB-D SLAM systems", IEEE/RSJ International Conference on Intelligent Robots and Systems, 7-12 Oct. 2012 2012, pp. 573-580, 2012. [30] Zhang and D. Scaramuzza, "A Tutorial on Quantitative Trajectory Evaluation for Visual(-Inertial) Odometry", in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7244-7251, 2018. [31] S. Ruder, "An Overview of Multi-Task Learning in Deep Neural Networks", ArXiv, vol. abs/1706.05098, 2017. [32] A. Kendall, Y. Gal, and R. Cipolla, "Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics", IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7482-7491, 2018. |