帳號:guest(3.15.192.137)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉佳翰
作者(外文):Yeh, Chia-Han
論文名稱(中文):網路嵌入方法應用於追蹤與預測行動用戶
論文名稱(外文):A Network Embedding Approach for Tracking and Predicting Mobile Users
指導教授(中文):張正尚
指導教授(外文):Chang, Cheng-Shang
口試委員(中文):許健平
蔡明哲
方凱田
口試委員(外文):Sheu, Jang-Ping
Tsai, Ming-Jer
Feng, Kai-Ten
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:108064520
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:39
中文關鍵詞:網路嵌入指紋定位行動用戶追蹤
外文關鍵詞:network embeddingfingerprintingtracking mobile users
相關次數:
  • 推薦推薦:0
  • 點閱點閱:103
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本篇論文中,我們提出了一種網路嵌入(network embedding) 方法,僅透過使用
行動用戶在LTE 網路中對基站的參考訊號接收功率(Reference Signal Received Power,
RSRP) 以追蹤及預測行動用戶。我們的方法之關鍵點在於將行動用戶與基站的RSRP
向量視為一個二分圖(bipartite graph): 左邊為行動用戶節點,右邊則為基站節點。接
著,我們將二分圖中行動用戶節點以及基站之節點投影到一個低維的歐氏幾何空間中。
透過將行動用戶的高維RSRP 向量轉換為低維之嵌入(特徵) 向量,我們便可以使用簡
單的追蹤方法,如有限脈衝響應(Finite Impulse Response, FIR) 濾波器來追蹤行動用
戶之位置。為了測試我們方法的有效性,我們使用了軟體模擬了一個包含54 個行動用
戶以及48 個基站之路網,並對此路網每隔一固定時間進行取樣快照(snapshots) 記錄
行動用戶之座標以及RSRP 向量。產生出的31 張快照中我們使用前30 張做為訓練集
(training set),而最後1 張快照做為測試集(testing set)。實驗結果顯示,我們的網路
嵌入方法對最後1 張快照的預測誤差與常用之指紋定位法(fingerprinting) 對前30 張
快照的估計誤差相當。
In this thesis, we propose a network embedding approach for tracking/predicting mobile
users by only using the Reference Signal Received Power (RSRP) from mobile users to base
stations in an LTE network. The key insight of our approach is to view RSRP vectors as a
bipartite graph with mobile user nodes on the left and base station nodes on the right. We
then embed the mobile user nodes and the base station nodes in the bipartite graph into a
low-dimensional Euclidean space. By doing so, we transform high-dimensional RSRP vectors
of mobiles users into low-dimensional embedding (latent) vectors so that they can be tracked
by using simple tracking methods, such as the Finite Impulse Response (FIR) filters. To test
the effectiveness of our approach, we generate a synthetic data set for a community with 54
mobile users, 48 base stations, and 31 snapshots. We use the first 30 snapshots for training
and the last snapshot for testing. Our numerical results show that the prediction errors of our
network embedding approach for the last snapshot are comparable to the estimation errors of
the commonly used fingerprinting method for the first 30 snapshots.
Contents 1
List of Figures 3
1 Introduction 4
2 Problem formulation 7
2.1 Positioning problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Fingerprinting problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Tracking/prediction problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 The network embedding approach 10
3.1 Construction of a similarity matrix . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 The CAFE algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Modularity matrix and the modularity of a partition . . . . . . . . . . . 11
3.2.2 The network embedding problem . . . . . . . . . . . . . . . . . . . . 12
3.2.3 The softmax clustering algorithm . . . . . . . . . . . . . . . . . . . . 14
3.2.4 Learning the embedding vectors . . . . . . . . . . . . . . . . . . . . . 15
3.3 Using the embedding vectors for the fingerprinting problem . . . . . . . . . . . 16
3.4 Using the embedding vectors for the tracking/prediction problem . . . . . . . . 16
3.4.1 Tracking a mobile user . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 Predicting a mobile user . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 System architecture 19
4.1 Network embedder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Locator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Tracker/Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Recommender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 A testing example 21
5.1 The RSRP vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 The embedding vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Effectiveness for the fingerprinting problem . . . . . . . . . . . . . . . . . . . 24
5.4 Tracking the embedding vectors . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 Predicting the coordinates of mobile users . . . . . . . . . . . . . . . . . . . . 29
5.6 Recommendation of base stations . . . . . . . . . . . . . . . . . . . . . . . . 30
6 Conclusion and Future Work 33
[1] P. Bahl and V. N. Padmanabhan, “Radar: An in-building rf-based user location and tracking
system,” in Proceedings IEEE INFOCOM 2000. Conference on computer communications.
Nineteenth annual joint conference of the IEEE computer and communications
societies (Cat. No. 00CH37064), vol. 2. Ieee, 2000, pp. 775–784.
[2] A. Khalajmehrabadi, N. Gatsis, and D. Akopian, “Modern wlan fingerprinting indoor
positioning methods and deployment challenges,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 3, pp. 1974–2002, 2017.
[3] X. Li and K. Pahlavan, “Super-resolution toa estimation with diversity for indoor geolocation,”
IEEE transactions on wireless communications, vol. 3, no. 1, pp. 224–234, 2004.
[4] A. T. Mariakakis, S. Sen, J. Lee, and K.-H. Kim, “Sail: Single access point-based indoor
localization,” in Proceedings of the 12th annual international conference on Mobile
systems, applications, and services, 2014, pp. 315–328.
[5] P. Prasithsangaree, P. Krishnamurthy, and P. Chrysanthis, “On indoor position location
with wireless lans,” in The 13th IEEE international symposium on personal, indoor and
mobile radio communications, vol. 2. IEEE, 2002, pp. 720–724.
[6] V. Honkavirta, T. Perala, S. Ali-Loytty, and R. Pich´e, “A comparative survey of wlan
location fingerprinting methods,” in 2009 6th workshop on positioning, navigation and
communication. IEEE, 2009, pp. 243–251.
[7] R. Singh, L. Macchi, C. S. Regazzoni, and K. N. Plataniotis, “A statistical modelling
based location determination method using fusion technique in wlan,” Proc. IEEE
IWWAN, pp. 256–260, 2005.
[8] J. J. Pan, J. T. Kwok, Q. Yang, and Y. Chen, “Multidimensional vector regression for
accurate and low-cost location estimation in pervasive computing,” IEEE Transactions
on Knowledge and Data Engineering, vol. 18, no. 9, pp. 1181–1193, 2006.
[9] X. Wang, L. Gao, S. Mao, and S. Pandey, “Csi-based fingerprinting for indoor localization:
A deep learning approach,” IEEE Transactions on Vehicular Technology, vol. 66,
no. 1, pp. 763–776, 2016.
[10] M. Nabati, H. Navidan, R. Shahbazian, S. A. Ghorashi, and D. Windridge, “Using synthetic
data to enhance the accuracy of fingerprint-based localization: A deep learning
approach,” IEEE Sensors Letters, vol. 4, no. 4, pp. 1–4, 2020.
[11] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on graphs: Methods
and applications,” arXiv preprint arXiv:1709.05584, 2017.
[12] Y. Xie, C. Li, B. Yu, C. Zhang, and Z. Tang, “A survey on dynamic network embedding,”
arXiv preprint arXiv:2006.08093, 2020.
[13] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding
and clustering,” in Advances in neural information processing systems, 2002, pp. 585–
591.
[14] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola, “Distributed
large-scale natural graph factorization,” in Proceedings of the 22nd international
conference on World Wide Web, 2013, pp. 37–48.
[15] S. Cao,W. Lu, and Q. Xu, “Grarep: Learning graph representations with global structural
information,” in Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management. ACM, 2015, pp. 891–900.
[16] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity preserving graph
embedding,” in Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, 2016, pp. 1105–1114.
[17] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social representations,”
in Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2014, pp. 701–710.
[18] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2016, pp. 855–864.
[19] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural
network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2008.
[20] A. Micheli, “Neural network for graphs: A contextual constructive approach,” IEEE
Transactions on Neural Networks, vol. 20, no. 3, pp. 498–511, 2009.
[21] T. N. Kipf and M.Welling, “Semi-supervised classification with graph convolutional networks,”
arXiv preprint arXiv:1609.02907, 2016.
[22] ——, “Variational graph auto-encoders,” arXiv preprint arXiv:1611.07308, 2016.
[23] P.-E. Lu and C.-S. Chang, “Explainable, stable, and scalable graph convolutional networks
for learning graph representation,” arXiv preprint arXiv:2009.10367, 2020.
[24] C.-S. Chang, C.-C. Huang, C.-T. Chang, D.-S. Lee, and P.-E. Lu, “Generalized modularity
embedding: a general framework for network embedding,” arXiv preprint
arXiv:1904.11027, 2019.
[25] P.-E. Lu, Y.-H. Peng, C.-S. Chang, and D.-S. Lee, “Percolation threshold for competitive
influence in random networks,” IEEE Transactions on Computational Social Systems,
vol. 7, no. 4, pp. 991–1003, 2020.
[26] Y.-Y. Lo, W. Liao, C.-S. Chang, and Y.-C. Lee, “Temporal matrix factorization for tracking
concept drift in individual user preferences,” IEEE Transactions on Computational
Social Systems, vol. 5, no. 1, pp. 156–168, 2017.
[27] T. Wu, C.-S. Chang, and W. Liao, “Tracking network evolution and their applications in
structural network analysis,” IEEE Transactions on Network Science and Engineering,
vol. 6, no. 3, pp. 562–575, 2019.
[28] Y.-C. Chen, P.-E. Lu, C.-S. Chang, and T.-H. Liu, “A time-dependent sir model for covid-
19 with undetectable infected persons,” IEEE Transactions on Network Science and Engineering,
vol. 7, no. 4, pp. 3279–3294, 2020.
[29] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Fl¨otter¨od, R. Hilbrich,
L. L¨ucken, J. Rummel, P. Wagner, and E. Wießner, “Microscopic traffic simulation using
sumo,” in The 21st IEEE International Conference on Intelligent Transportation Systems.
IEEE, 2018. [Online]. Available: https://elib.dlr.de/124092/
[30] M. Newman, Networks: an introduction. OUP Oxford, 2009.
[31] C.-S. Chang, C.-J. Chang, W.-T. Hsieh, D.-S. Lee, L.-H. Liou, and W. Liao, “Relative
centrality and local community detection,” Network Science, vol. 3, no. 4, pp. 445–479,
2015.
[32] C.-S. Chang, D.-S. Lee, L.-H. Liou, S.-M. Lu, and M.-H. Wu, “A probabilistic framework
for structural analysis and community detection in directed networks,” IEEE/ACM
Transactions on Networking, vol. 26, no. 1, pp. 31–46, 2018.
[33] C.-T. Chang and C.-S. Chang, “A unified framework for sampling, clustering and embedding
data points in semi-metric spaces,” arXiv preprint arXiv:1708.00316, 2017.
[34] M. E. Newman, “Fast algorithm for detecting community structure in networks,” Physical
review E, vol. 69, no. 6, p. 066133, 2004.
[35] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17,
no. 4, pp. 395–416, 2007.
[36] E. Kokiopoulou, J. Chen, and Y. Saad, “Trace optimization and eigenproblems in dimension
reduction methods,” Numerical Linear Algebra with Applications, vol. 18, no. 3, pp.
565–602, 2011.
[37] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.
[38] R. Johnson, System modeling and identification. Prentice Hall, 1993.
[39] T. S. Rappaport et al., Wireless communications: principles and practice. prentice hall
PTR New Jersey, 1996, vol. 2.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *