帳號:guest(3.145.175.253)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王柔蓁
作者(外文):Wang, Jou-Chen
論文名稱(中文):適用於張量壓縮式感測之多維區塊正交匹配追蹤處理器積體電路設計
論文名稱(外文):VLSI Design of N-way Block Orthogonal Matching Pursuit Processor for Tensor Compressive Sensing
指導教授(中文):黃元豪
指導教授(外文):Huang, Yuan-Hao
口試委員(中文):蔡佩芸
陳喬恩
口試委員(外文):Tsai, Pei-Yun
Chen, Chiao-En
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:108064514
出版年(民國):110
畢業學年度:110
語文別:英文
論文頁數:85
中文關鍵詞:壓縮式感知張量壓縮式感知正交匹配追蹤多維區塊正交匹配追蹤超大型積體電路
外文關鍵詞:Compressive sensingTensor compressive sensingOrthogonal matching pursuitN-way block Orthogonal matching pursuitVLSI
相關次數:
  • 推薦推薦:0
  • 點閱點閱:569
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
壓縮感知已成為數位信號處理理論中的一項重要技術。壓縮感知可以通過較低的取樣率來對具有稀疏表示的信號進行取樣及重建,從而降低計算複雜度。但前提是信號必須是向量的形式。在這個前提下,如果壓縮感知要處理灰階圖像、RGB圖像、視頻等多維度的張量信號,必須先將信號做向量化,展成長向量,然後再用維度較大的感知矩陣進行測量。該方法計算複雜度高,使得傳統的壓縮感知理論不適用於張量信號。因此,張量壓縮感知通過利用沿著各維度產生的可分離式感知矩陣解決了上述問題,並有研究根據張量壓縮感知取樣後的信號,提出了兩個主要的重建演算法,廣義張量壓縮感知和多維區塊正交匹配追踪,而本文則提出了一種改進的多維區塊正交匹配追踪演算法。儘管多維區塊正交匹配追踪是一個成熟的重建演算法,但由於使用了丘列斯基分解及在重建過程中計算的數據之間有高度相依性,使它仍然難以用做硬體實現。而所提出的演算法在沒有任何效能損失的情況下,除了大幅降低原始多維區塊正交匹配追踪演算法的計算複雜度之外,同時提升計算的數據之間的獨立性,以利於硬體的平行化設計。最後,本研究基於改進的多維區塊正交匹配追踪演算法設計出多維區塊正交匹配追踪處理器的智慧財產權核生成器,並以型號為Zynq UltraScale+ MPSoC ZCU102 / xczu9eg-ffvb1156-2-e 的現場可程式邏輯閘陣列實現。
Compressive sensing (CS) has become a significant technique in the digital signal processing theory. The CS figures out that signals with a sparse representation can be reconstructed by a lower data rate which reduces the computational complexity. However, there is a premise that data must in the form of vectors. Under this premise, if the CS wants to deal with signals with multidimensional forms, such as gray images, RGB images and videos, the signals must be vectorized into long vectors first and then be measured by large sampling matrices. This method causes a high computational complexity and makes conventional CS theory not suitable for tensor signals. As a result, the tensor compressive sensing (TCS) tackles the above problems by utilizing separable sensing operators along tensor modes, and two main reconstruction algorithm were proposed, the generalized tensor compressive sensing (GTCS) and the N-way block orthogonal matching pursuit (N-BOMP). In this thesis, a modified N-BOMP algorithm is proposed. Although the N-BOMP is a well-developed reconstruction algorithm, it is still impractical because of the usage of the Cholesky decomposition and the high dependency of the data computed in the process of the reconstruction. The proposed algorithm makes a substantial reduction of the computational complexity of the original N-BOMP algorithm without any reconstruction performance loss. In addition, the proposed algorithm is also suitable for hardware design because its high data independency and an IP generator of the N-BOMP processor was designed. The proposed IP generator of the N-BOMP processor was implemented by field programmable gate array (FPGA) on device Zynq UltraScale+ MPSoC ZCU102 of xczu9eg- vb1156-2-e.
摘要
目錄
1 Introduction ------ 1
2 Background ------ 5
2.1 Basic Definition of Tensor ------ 5
2.1.1 Mode-n Tensor ------ 5
2.1.2 Mode-i Vector ------ 6
2.1.3 Mode-i Unfolding Matrix ------ 6
2.2 Multi-linear Algebra ------ 7
2.2.1 Mode-k Tensor by Matrix Product and Tucker Model ------ 7
2.2.2 Kronecker Product ------ 9
2.2.3 Schur-Banachiewicz Block-wise Matrix Inverse ------ 10
2.3 Compressive Sensing and Reconstruction Algorithms ------ 10
2.3.1 Compressive Sensing Model ------ 10
2.3.2 Orthogonal Matching Pursuit ------ 12
2.3.3 Matrix Inverse Bypassed Orthogonal Matching Pursuit ------ 13
2.4 Tensor Compressive Sensing ------ 17
2.4.1 Sparse Representation of Tensor Signals ------ 17
2.4.2 Tensor Compressive Sensing ------ 18
3 Proposed Modified N-way Block Orthogonal Matching Pursuit for
Tensor Compressive Sensing ------ 21
3.1 N-way Block Orthogonal Matching Pursuit ------ 21
3.2 The Proposed Modified N-way Block Orthogonal Matching Pursuit Algorithm ------ 24
4 Simulation Results and Performance Analysis ------ 43
4.1 Simulation Settings ------ 43
4.2 Computational Complexity Analysis ------ 46
4.3 Elapsed Time and Floating Point Operation Analysis ------ 47
4.4 Reconstruction Performance Analysis ------ 49
5 VLSI Design and Implementation Results ------ 57
5.1 Architecture Design ------ 57
5.1.1 Degree of Parallelism ------ 57
5.1.2 Hardware Design Algorithm 1 ------ 60
5.1.3 Hardware Design Algorithm 2 ------ 64
5.2 Circuit Design ------ 70
5.2.1 Initialization ------ 70
5.2.2 Index Selection Circuit ------ 71
5.2.3 Processing Element ------ 72
5.3 Timing Schedule ------ 73
5.4 Fixed-Point Simulation and FPGA Implementation Results ------ 74
5.4.1 Fixed-Point Simulation ------ 74
5.4.2 FPGA Implementation Results ------ 75
6 Conclusion and Future Works ------ 81
參考文獻 ------ 83
[1] E. J. Candes and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21-30, 2008.
[2] R. G. Baraniuk, "Compressive sensing [lecture notes]," IEEE Signal Processing Magazine, vol. 24, no. 4, pp. 118-121, 2007.
[3] S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM review, vol. 43, no. 1, pp. 129-159, 2001.
[4] J. A. Tropp, "Greed is good: Algorithmic results for sparse approximation," IEEE Transactions on Information theory, vol. 50, no. 10, pp. 2231-2242, 2004.
[5] G. Huang and L. Wang, "High-speed signal reconstruction with orthogonal matching pursuit via matrix inversion bypass," in 2012 IEEE Workshop on Signal Processing Systems. IEEE, 2012, pp. 191-196.
[6] M. F. Duarte and R. G. Baraniuk, "Kronecker compressive sensing," IEEE Transactions on Image Processing, vol. 21, no. 2, pp. 494-504, 2011.
[7] N. D. Sidiropoulos and A. Kyrillidis, "Multi-way compressed sensing for sparse low-rank tensors," IEEE Signal Processing Letters, vol. 19, no. 11, pp. 757-760, 2012.
[8] S. Friedland, Q. Li, and D. Schonfeld, "Compressive sensing of sparse tensors," IEEE Transactions on Image Processing, vol. 23, no. 10, pp. 4438-4447, 2014.
[9] C. F. Caiafa and A. Cichocki, "Computing sparse representations of multidimensional signals using kronecker bases," Neural computation, vol. 25, no. 1, pp. 186-220, 2013.
[10] L. De Lathauwer, B. De Moor, and J. Vandewalle, "A multilinear singular value decomposition," SIAM journal on Matrix Analysis and Applications, vol. 21, no. 4, pp. 1253-1278, 2000.
[11] L. R. Tucker, "Implications of factor analysis of three-way matrices for measurement of change," in Problems in measuring change., C. W. Harris, Ed. Madison WI: University of Wisconsin Press, 1963, pp. 122-137.
[12] Y. Tian and Y. Takane, "Schur complements and banachiewicz-schur forms," ELA. The Electronic Journal of Linear Algebra [electronic only], vol. 13, 01 2005.
[13] G. M. Davis, S. G. Mallat, and Z. Zhang, "Adaptive time-frequency decompositions," Optical engineering, vol. 33, no. 7, pp. 2183-2191, 1994.
[14] C. F. Caiafa and A. Cichocki, "Multidimensional compressed sensing and their applications," Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 3, no. 6, pp. 355-380, 2013.
[15] S. M. Nascimento, K. Amano, and D. H. Foster, "Spatial distributions of local illumination color in natural scenes," Vision Research, vol. 120, pp. 39-44, 2016, vision and the Statistics of the Natural Environment. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0042698915002709
[16] G. G. Lee, H.-Y. Lin, C.-F. Chen, and T.-Y. Huang, "Quantifying intrinsic parallelism using linear algebra for algorithm/architecture coexploration," IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 5, pp. 944-957, 2011.
[17] F. R. Chung and F. C. Graham, Spectral graph theory. American Mathematical Soc., 1997, no. 92.
[18] M. Fiedler, "Algebraic connectivity of graphs," Czechoslovak mathematical journal, vol. 23, no. 2, pp. 298-305, 1973.
[19] O. R. Oellermann and A. J. Schwenk, "The laplacian spectrum of graphs," 1991.
[20] E. K. Chong and S. H. Zak, An introduction to optimization. John Wiley & Sons, 2004.
[21] J. Wang, S. Kwon, and B. Shim, "Generalized orthogonal matching pursuit," IEEE Transactions on Signal Processing, vol. 60, no. 12, pp. 6202-6216, 2012.
[22] J. L. Stanislaus and T. Mohsenin, "High performance compressive sensing reconstruction hardware with qrd process," in 2012 IEEE International Symposium on Circuits and Systems (ISCAS), 2012, pp. 29-32.
[23] L. Bai, P. Maechler, M. Muehlberghuber, and H. Kaeslin, "High-speed compressed sensing reconstruction on fpga using omp and amp," in 2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012), 2012, pp. 53-56.
[24] F. Ren, R. Dorrace, W. Xu, and D. Markovic, "A single-precision compressive sensing signal reconstruction engine on fpgas," in 2013 23rd International Conference on Field programmable Logic and Applications, 2013, pp. 1-4.
[25] J. Chen, Z. Zhang, H. Lu, J. Hu, and G. E. Sobelman, "An intra-iterative interference cancellation detector for large-scale mimo communications based on convex optimization," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 11, pp. 2062-2072, 2016.
[26] R. Zhao, Q.Wang, Y. Shen, and J. Li, "Multiatom tensor orthogonal matching pursuit algorithm for compressive-sensing-based hyperspectral image reconstruction," Journal of Applied Remote Sensing, vol. 10, no. 4, p. 045002, 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *