帳號:guest(18.118.27.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂紹瑋
作者(外文):Lu, Shao-Wei
論文名稱(中文):可重構智慧表面輔助之下行MISO-NOMA系統的聯合功率分配與預編碼技術
論文名稱(外文):Joint Power Allocation and Precoding for an RIS-Assisted Downlink MISO-NOMA System
指導教授(中文):王晉良
指導教授(外文):Wang, Chin-Liang
口試委員(中文):陳永芳
古聖如
黃昱智
口試委員(外文):Chen, Yung-Fang
Ku, Sheng-Ju
Huang, Yu-Chih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:108064508
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:28
中文關鍵詞:可重構智慧表面多輸入單輸出非正交多重接取預編碼器功率分配
外文關鍵詞:Reconfigurable Intelligent Surface (RIS)Multiple-input Single-output (MISO)Non-orthogonal Multiple Access (NOMA)PrecodingPower Allocation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:267
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本論文中,我們提出一種在可重構智慧表面(reconfigurable intelligent surface; RIS)輔助下之下行多輸入單輸出(MISO)非正交多重接取(non-orthogonal multiple access; NOMA)系統的聯合功率分配與預編碼技術;此系統包含多個使用者,並分成多個群組;每一群組由一個靠近基地台的使用者和一個遠離基地台的使用者組成,其中後者透過RIS的協助以接收來自基地台的訊號。本論文的目標乃藉由聯合最佳化基地台的預編碼向量、RIS的反射係數向量以及每個群組內的使用者功率分配因子,以便在一定的傳輸速率要求下最小化基地台的傳輸功率。我們首先利用區塊對角化技術開發多群組MISO-NOMA 通道對應的空間相關矩陣,以推導出可消除群組間干擾的預編碼器;這些預編碼器可將多群組通道轉換為多個平行的單群組通道,從而將一個多群組功率最小化問題簡化成多個相同的單群組功率最小化問題。針對每一單群組問題,我們進一步提出一個迭代式演算法以求得次佳解,其中對應的預編碼向量、RIS反射係數向量以及使用者的功率分配因子皆會在每次迭代過程中適當更新。電腦模擬結果顯示,與現有相關作法比較,我們針對RIS輔助MISO-NOMA系統所提出之聯合功率分配與預編碼技術可在一定的傳輸速率要求下有效降低基地台的傳輸功率。
In this thesis, we propose a joint power allocation and precoding scheme for a downlink multi-cluster multiple-input-single-output (MISO) non-orthogonal multiple access (NOMA) system with the assistance of a reconfigurable intelligent surface (RIS). In the system, the users are divided into multiple clusters; each cluster has one near user and one cell-edge user, where the cell-edge user receives assistance from the RIS. Our target is to minimize the total transmit power subject to a transmission rate requirement by jointly optimizing the precoding vector at the base station, the reflection coefficient vector at the RIS, and the users’ power allocation factor for each cluster. First, we derive some precoders based on block diagonalization (BD) that exploit spatial correlation matrices of the multi-cluster MISO-NOMA channel to eliminate inter-cluster interference. With these BD-based precoder, the multi-cluster channel is converted into multiple parallel single-cluster channels, and thus the multi-cluster power minimization problem can be simplified as several identical single-cluster power minimization problems. For each single-cluster case, we subsequently propose an iterative algorithm to obtain a suboptimal solution to the optimization problem, where the corresponding precoding vector, the reflection coefficient vector, and the users’ power allocation factor are updated properly at each iteration. It is demonstrated by computer simulation results that the proposed joint power allocation and precoding scheme for an RIS-assisted MISO-NOMA system can effectively reduce the transmit power under a transmission rate requirement, as compared with a previous related design.
Abstract
Contents
List of Figures
List of Tables
I. Introduction---------------------------------------------1
II. System Model---------------------------------------------4
III. Proposed Methods-----------------------------------------9
A. Inter-cluster Interference Cancellation------------------9
B. Optimization of the Precoding Vector--------------------11
C. Optimization of the Reflection Coefficient Vector-------13
D. Optimization of the Power Allocation Factor-------------14
E. Iterative Design of Power Allocation and Precoding------16
F. Complexity Analysis of the Iterative Design-------------17
IV. Simulation Results--------------------------------------19
V. Conclusion----------------------------------------------25
References----------------------------------------------------26

[1] P. Wang, J. Xiao, and L. Ping, “Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems,” IEEE Veh. Technol. Mag., vol. 1, no. 3, pp. 4–11, Sep. 2006.
[2] Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” in Proc. IEEE Int. Symp. Intell. Signal Process. Commun. Syst. (ISPACS), Naha, Japan, Nov. 2013, pp. 770–774.
[3] Y. Saito, A. Benjebbour, Y. Kishiyama, and T. Nakamura, “System-level performance evaluation of downlink non-orthogonal multiple access (NOMA),” in Proc. IEEE 24th Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), London, UK, Sep. 2013, pp. 611–615.
[4] Q. C. Li, H. Niu, A. T. Papathanassiou, and G. Wu, “5G network capacity: Key elements and technologies,” IEEE Veh. Technol. Mag., vol. 9, no. 1, pp. 71–78, Jan. 2014.
[5] K. Yang, N. Yang, N. Ye, M. Jia, Z. Gao, and R. Fan, “Non-orthogonal multiple access: Achieving sustainable future radio access,” IEEE Commun. Mag., vol. 57, no. 2, pp. 1–6, Nov. 2018.
[6] Z. Chen, Z. Ding, X. Dai, and G. K. Karagiannidis, “On the application of quasi-degradation to MISO-NOMA downlink,” IEEE Trans. Signal Process., vol. 64, no. 23, pp. 6174–6189, Aug. 2016.
[7] Y.-C. Liang, R. Long, Q. Zhang, J. Chen, H. V. Cheng, and H. Guo, “Large intelligent surface/antennas (LISA): Making reflective radios smart,” J. Commun. Inf. Netw., vol. 4, no. 2, pp. 40–50, Jun. 2019. [8] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini, and R. Zhang, “Wireless communications through reconfigurable intelligent surfaces,” IEEE Access, vol. 7, pp. 116753–116773, Aug. 2019.
[9] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans. Wirel. Commun., vol. 18, no. 8, pp. 4157–4170, Jun. 2019.
[10] S. Zeng, H. Zhang, B. Di, Z. Han, and L. Song, “Reconfigurable intelligent surface (RIS) assisted wireless coverage extension: RIS orientation and location optimization,” IEEE Commun. Lett., vol. 25, no. 1, pp. 269–273, Sep. 2020.
[11] Z. Ding and H. Vincent Poor, “A simple design of IRS-NOMA transmission,” IEEE Commun. Lett., vol. 24, no. 5, pp. 1119–1123, Feb. 2020.
[12] H. Guo, Y.-C. Liang, J. Chen, and E. G. Larsson, “Weighted sum-rate maximization for intelligent reflecting surface enhanced wireless networks,” in Proc. IEEE Glob. Commun. Conf. (GLOBECOM), Waikoloa, HI, USA, Dec. 2019, pp. 1–6.
[13] G. Yang, X. Xu, and Y.-C. Liang, “Intelligent reflecting surface assisted non-orthogonal multiple access,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Seoul, South Korea, May 2020, pp. 1–6. [14] J. Zuo, Y. Liu, E. Basar, and O. A. Dobre, “Intelligent reflecting surface enhanced millimeter-wave NOMA systems,” IEEE Commun. Lett., vol. 24, no. 11, pp. 2632–2636, Jul. 2020.
[15] Y. Li, M. Jiang, Q. Zhang, and J. Qin, “Joint beamforming design in multi-cluster MISO NOMA reconfigurable intelligent surface-aided downlink communication networks,” IEEE Trans. Commun., vol. 69, no. 1, pp. 664–674, Oct. 2021.
[16] J. Zhang, H. Du, Q. Sun, B. Ai, and D. W. K. Ng, “Physical layer security enhancement with reconfigurable intelligent surface-aided networks,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 3480–3495, May 2021.
[17] S. Huang, S. Wang, R. Wang, M. Wen, and K. Huang, “Reconfigurable intelligent surface assisted edge machine learning,” in Proc. IEEE Int. Conf. Commun. (ICC), Montreal, QC, Canada, Jun. 2021, pp. 1–6. [18] Z. Li, M. Chen, Z. Yang, J. Zhao, Y. Wang, J. Shi, and C. Huang, “Energy efficient reconfigurable intelligent surface enabled mobile edge computing networks with NOMA,” IEEE Trans. Cogn. Commun. Netw., vol. 7, no. 2, pp. 427–440, Mar. 2021.
[19] Z. Ding and H. V. Poor, “Design of massive-MIMO-NOMA with limited feedback,” IEEE Signal Process. Lett., vol. 23, no. 5, pp. 629–633, Mar. 2016.
[20] J.-J. Zheng, “Joint power allocation, precoding, and decoding for downlink massive MIMO non-orthogonal multiple access systems,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2016.
[21] A. Adhikary, J. Nam, J.-Y. Ahn, and G. Caire, “Joint spatial division and multiplexing—the large-scale array regime,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6441–6463, Jun. 2013.
[22] D.-S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation and its effect on the capacity of multielement antenna systems,” IEEE Trans. Commun., vol. 48, no. 3, pp. 502–513, Mar. 2000.
[23] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD, USA: Johns Hopkins University Press, 1996.
[24] 5G; Study on Channel Model for Frequencies from 0.5 to 100 GHz; Tech. Rep., 3GPP TR 38.901, V14.0.0, May 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *