資料載入處理中...
圖書館首頁
|
網站地圖
|
首頁
|
本站說明
|
聯絡我們
|
相關資源
|
台聯大論文系統
|
操作說明
|
English
簡易查詢
進階查詢
論文瀏覽
熱門排行
我的研究室
上傳論文
建檔說明
常見問題
帳號:guest(3.145.65.167)
離開系統
字體大小:
詳目顯示
第 1 筆 / 共 1 筆
/1
頁
以作者查詢圖書館館藏
、
以作者查詢臺灣博碩士論文系統
、
以作者查詢全國書目
論文基本資料
摘要
外文摘要
論文目次
參考文獻
電子全文
作者(中文):
陳奕均
作者(外文):
Chen, I-Chun
論文名稱(中文):
基於多尺度關注之金字塔去霧模型
論文名稱(外文):
Multiscale Attention-guided Pyramid Network for Single Image Dehazing
指導教授(中文):
林嘉文
指導教授(外文):
Lin, Chia-Wen
口試委員(中文):
林彥宇
彭彥璁
黃士嘉
口試委員(外文):
Lin, Yen-Yu
Peng, Yan-Tsung
Huang, Shih-Chia
學位類別:
碩士
校院名稱:
國立清華大學
系所名稱:
通訊工程研究所
學號:
108064503
出版年(民國):
110
畢業學年度:
109
語文別:
英文
論文頁數:
28
中文關鍵詞:
多尺度架構
、
金字塔卷積網路
、
單張圖像去霧
外文關鍵詞:
multiscale architecture
、
pyramid convolutional network
、
single image dehazing
相關次數:
推薦:0
點閱:475
評分:
下載:0
收藏:0
伴隨深度學習在圖像修復任務中的發展,諸多方法透過注意力機制來加強模型對
圖像淺層特徵的處理,進而在合成數據集中達到理想修復效果。由於現今大多數圖像去霧的方法皆以訓練在合成數據集為主,因此將模型運用在真實霧霾情況下的去霧效果並非理想,然而在存有的真實數據集中可訓練資料量不多,因此在有限數量中訓練模型達到理想去霧效果已成為一個挑戰。在有限資料情況下,透過多尺度的模型設計提升圖像品質是廣為人知的手法。
多尺度卷積網路藉由提取不同尺寸的圖像之整體特徵及細節資訊來達到模型之效
能提升,而鑑於深度學習近期的發展下,多尺度架構設計能增強圖像處理之效能已被證實。然而,霧霾的型態千變萬化且無可預知,是故只透過多尺度的特徵提取是不足以應變多樣化的霧霾情況。
在本篇論文中提出基於多尺度關注之金字塔卷積的去霧架構。首先,為了增加其
延展性,因此增加不同尺度大小之金字塔卷積(Convolution)架構;再者,為了達到有效去霧,透過注意力機制使模型關注圖片的高頻資訊。實驗結果顯示本篇論文相較於過去方法的優勢。
With the development of deep learning in image restoration tasks, many deep learning-based methods enhance the abilities of models for extracting the effective features of images through attention mechanisms, achieving ideal dehazing performance. Since existing deep learning approaches of image dehazing tasks are mainly trained on synthetic datasets, the domain gap between real-world haze and synthetic haze makes the trained models have performance drop obviously. For the existing limited real-world datasets, it has been a challenge to train models with limited data. With the limitation of available real-world data, multiscale architecture is a well-known technique to improve model performance.
Multiscale convolutional networks achieve performance enhancement by extracting global information and local details from different scale features, and it has been proven that the multiscale architecture can improve the performance in image restoration tasks. However, haze is variable and unpredictable, it is not sufficient to handle diverse haze conditions with only consider multiscale extracted features.
We propose a Multiscale Attention-guided Pyramid Network for single image dehazing tasks in our method. In order to increase the extensibility of the model, we apply a pyramid convolutional block. Apart from this, the attention mechanisms make the model pay attention to the high-frequency region in order to dehaze effectively. The extensive evaluation results show the advantages of our proposed method compared to previous works.
摘要 ii
Abstract iii
1 Introduction 7
2 Related Work 9
2.1 Handcrafted prior-based methods 9
2.2 Learning-based methods 10
3 Methodology 11
3.1 Overview 11
3.2 Multiscale Attention-guide block (MA block) 12
3.2.1 Basic Block Structure 13
3.3 Pyramid Convolutional block (PC block) 14
3.4 Loss Functions 15
3.4.1 Reconstruction loss 15
3.4.2 Perceptual loss 16
3.4.3 Laplacian loss (Edge loss) 16
4 Experiments 17
4.1 Datasets 17
4.1.1 Homogeneous Haze 17
4.1.2 Non-Homogeneous Haze 17
4.2 Implementation Details 18
4.3 Performance Evaluation 18
4.4 Qualitative Visualization 19
4.5 Ablation Study 22
4.5.1 Architecture ablation 22
4.5.2 Loss ablation 23
5 Conclusion 25
Reference 26
[1]E.J. McCartney. “Optics of the atmosphere”. In:scattering by molecules and parti-cles, New York, John Wiley and Sons, Inc.,1976, p. 421.
[2]Avidan S. et al. Berman D. “Non-local image dehazing”. In:Proceedings of the IEEEconference on computer vision and pattern recognition,1974-1682.
[3]Sun C. Zhao Y. Jiang Y. and L. Yang. “Image dehazing using adaptive bi-channelpriors on superpixels”. In:Computer Vision and Image Understanding, 165:17–32.
[4]Sun J. Tang X. He K. “Single image haze removal using dark channel prior”.In:IEEE transactions on pattern analysis and machine intelligence 33(12). 2010,pp. 2341–2353.
[5]Ma Y. Shi Z.-Chen J. Liu X. “Griddehazenet: Attention-based multi-scale networkfor image dehazing”. In:Proceedings of the IEEE International Conference on Com-puter Vision. 2019, pp. 7314–7323.[6]Xu X. Jia K.-Qing C. Cai B. and D. Tao. “Dehazenet: An end-to-end system forsingle image haze removal”. In:IEEE Transactions on Image Processing 25(11).2016, pp. 5187–5198.
[7]R. Fattal. “Single image dehazing”. In:ACM transactions on graphics (TOG)27(3):72. 2008, pp. 1–9.
[8]Sun J. Tang X. He K. “Single image haze removal using dark channel prior”.In:IEEE transactions on pattern analysis and machine intelligence 33(12). 2010,pp. 2341–2353.
[9]R. Fattal. “Dehazing using color-lines”. In:ACM transactions on graphics (TOG)34(1). 2014, pp. 1–14.
[10]Liu S. Zhang H.-Pan J. Cao X. Ren W. and M.H. Yang. “Single image dehazing viamulti-scale convolutional neural networks”. In:European Conference on ComputerVision. 2016, pp. 154–169.
[11]Wang Z. Bai Y.-Xie X. Qin X. and H. Jia. “FFA-Net: Feature Fusion AttentionNetwork for Single Image Dehazing”. In:AAAI. 2020, pp. 11908–11915.
[12]He Zhang and Vishal M Patel. “Densely Connected Pyramid Dehazing Network”.In:CVPR. 2018.
[13]Ajay Bhave Ayush Singh and Dilip K. Prasad. “Single image dehazing for a varietyof haze scenarios using back projected pyramid network”. In:ECCV Workshop.2020.
[14]Fischer P. Brox T. Ronneberger O. “U-Net: convolutional networks for biomedicalimage segmentation”. In:International Conference on Medical Image Computingand Computer Assisted Intervention. 2015, pp. 234–241.
[15]Ancuti C. O. Timofte-R. Ancuti C. “Ntire 2018 challenge on image dehazing: Meth-ods and results”. In:Proceedings of the IEEE Conference on Computer Vision andPattern Recognition Workshops. 2018, pp. 891–901.
[16]Gu S. Timofte R.-Zhang L. Cai J. “Ntire 2019 challenge on real image super-resolution: Methods and results”. In:Proceedings of the IEEE Conference on Com-puter Vision and Pattern Recognition Workshops. 2019, pp. 0–0.
[17]Ancuti C.O. Vasluianu F.A.-Timofte R. Ancuti C. “Ntire 2020 challenge on nonho-mogeneous dehazing”. In:Proceedings of the IEEE/CVF Conference on ComputerVision and Pattern Recognition Workshops. 2020, pp. 490–491.
[18]Suganuma M. Sun Z. Liu X. and T. Okatani. “Dual Residual Networks Leverag-ing the Potential of PairedOperations for Image Restoration”. In:Conference onComputer Vision and Pattern Recognition. 2019b, pp. 7007–7016.
[19]Huang Ziling Tsai Chung-Chi Deng Qili and Chia-Wen Lin. “HardGAN: A Haze-Aware Representation Distillation GAN for Single Image Dehazing”. In:EuropeanConference on Computer Vision. Springer. 2020, pp. 722–738.
電子全文
中英文摘要
推文
當script無法執行時可按︰
推文
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
1.
基於特徵選擇之行動式地標辨識
2.
基於自我學習的高壓縮影像之超解析度及去塊技術研究
3.
基於曝光補償之曝光不足影像強化演算法
4.
多視角視訊串流中基於封包遺失模型之視角切換延遲最佳化之研究
5.
以語意結構為基礎產生電影摘要
6.
具可適性之不良照明影像強化演算法
7.
基於人事時地分析之社群相簿摘要系統
8.
基於超解析度技術提升人臉偵測表現研究
9.
基於LSTM神經網路之車輛軌跡預測
10.
基於訓練數據平衡化和特徵通道多樣化的車輛重識別研究
11.
SR2-REC:基於句子重解讀和樣式正則化的適應性指述理解技術
12.
用於動態場景影像去模糊的模糊感知關注網路
13.
用於影像去霧的物理引導霧增強網路
14.
適用於多場景渲染之基於深度引導的人體神經輻射場模型
15.
基於圖的指代表達理解及其推廣
簡易查詢
|
進階查詢
|
論文瀏覽
|
熱門排行
|
管理/審核者登入