|
[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communicationefficient learning of deep networks from decentralized data,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), vol. 54, 2017, pp. 1273–1282. [2] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire, “Femtocaching: Wireless content delivery through distributed caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8402–8413, 2013. [3] L. Li, G. Zhao, and R. S. Blum, “A survey of caching techniques in cellular networks: Research issues and challenges in content placement and delivery strategies,” IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 1710–1732, 2018. [4] S. H. Chae and W. Choi, “Caching placement in stochastic wireless caching helper networks: Channel selection diversity via caching,” IEEE Trans. Commun., vol. 15, no. 10, pp. 6626–6637, 2016. [5] B. Zhou, Y. Cui, and M. Tao, “Optimal dynamic multicast scheduling for cache-enabled content-centric wireless networks,” IEEE Trans. Commun., vol. 65, no. 7, pp. 2956–2970, 2017. [6] C. Yang, Y. Yao, Z. Chen, and B. Xia, “Analysis on cache-enabled wireless heterogeneous networks,” IEEE Trans. Wireless Commun., vol. 15, no. 1, pp. 131–145, 2015. [7] K. Li, C. Yang, Z. Chen, and M. Tao, “Optimization and analysis of probabilistic caching in n-tier heterogeneous networks,” IEEE Trans. Wireless Commun., vol. 17, no. 2, pp. 1283– 1297, 2017. [8] Z. Chen, J. Lee, T. Q. Quek, and M. Kountouris, “Cooperative caching and transmission design in cluster-centric small cell networks,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 3401–3415, 2017. [9] M.-C. Lee and A. F. Molisch, “Caching policy and cooperation distance design for base station assisted wireless D2D caching networks: Throughput and energy efficiency optimization and trade-off,” IEEE Trans. Wireless Commun., vol. 17, no. 11, pp. 7500–7514, 2018. [10] M.-C. Lee, M. Ji, A. F. Molisch, and N. Sastry, “Throughput–outage analysis and evaluation of cache-aided d2d networks with measured popularity distributions,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5316–5332, 2019. [11] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy efficient federated learning over wireless communication networks,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1935–1949, 2021. [12] S. Zheng, C. Shen, and X. Chen, “Design and analysis of uplink and downlink communications for federated learning,” IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 2150–2167, 2020. [13] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan, “Adaptive federated learning in resource constrained edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1205–1221, 2019. [14] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint learning and communications framework for federated learning over wireless networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 269–283, 2021. [15] W. Shi, S. Zhou, Z. Niu, M. Jiang, and L. Geng, “Joint device scheduling and resource allocation for latency constrained wireless federated learning,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 453–467, 2020. [16] H. H. Yang, Z. Liu, T. Q. Quek, and H. V. Poor, “Scheduling policies for federated learning in wireless networks,” IEEE Trans. Commun., vol. 68, no. 1, pp. 317–333, 2020. [17] Y. He, J. Ren, G. Yu, and J. Yuan, “Importance-aware data selection and resource allocation in federated edge learning system,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 13 593–13 605, 2020. [18] M. M. Wadu, S. Samarakoon, and M. Bennis, “Joint client scheduling and resource allocation under channel uncertainty in federated learning,” IEEE Trans. Commun., 2021. [19] H. T. Nguyen, V. Sehwag, S. Hosseinalipour, C. G. Brinton, M. Chiang, and H. V. Poor, “Fast-convergent federated learning,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 201– 218, 2020. [20] M. M. Amiri, D. Gund ¨ uz, S. R. Kulkarni, and H. V. Poor, “Convergence of update aware device scheduling for federated learning at the wireless edge,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3643–3658, 2021. [21] C. T. Dinh, N. H. Tran, M. N. Nguyen, C. S. Hong, W. Bao, A. Y. Zomaya, and V. Gramoli, “Federated learning over wireless networks: Convergence analysis and resource allocation,” IEEE/ACM Trans. Netw., vol. 29, no. 1, pp. 398–409, 2020. [22] C. Feng, Y. Wang, Z. Zhao, T. Q. Quek, and M. Peng, “Joint optimization of data sampling and user selection for federated learning in the mobile edge computing systems,” in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), 2020, pp. 1–6. [23] J. Ren, Y. He, D. Wen, G. Yu, K. Huang, and D. Guo, “Scheduling for cellular federated edge learning with importance and channel awareness,” IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7690–7703, 2020. [24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2015. [25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 770–778. [26] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv:1704.04861, 2017. [27] H. Q. Le, H. Al-Shatri, and A. Klein, “Efficient resource allocation in mobile-edge computation offloading: Completion time minimization,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2017, pp. 2513–2517. [28] N. H. Tran, W. Bao, A. Zomaya, N. M. NH, and C. S. Hong, “Federated learning over wireless networks: Optimization model design and analysis,” in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), 2019, pp. 1387–1395. [29] S. Martello, “Knapsack problems: algorithms and computer implementations, WileyInterscience series in discrete mathematics and optimization, 1990. [30] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems. Springer, 2004. [31] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical learning via the alternating direction method of multipliers. Now Publishers Inc, 2011. [32] D. Bertsekas, Nonlinear Programming. Athena Scientific, 1999. [33] D. G. Cattrysse and L. N. Van Wassenhove, “A survey of algorithms for the generalized assignment problem,” European Journal of Operational Research, vol. 60, no. 3, pp. 260– 272, 1992. [34] R. Cohen, L. Katzir, and D. Raz, “An efficient approximation for the generalized assignment problem,” Information Processing Letters, vol. 100, no. 4, pp. 162–166, 2006. [35] Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-efficient radio resource allocation for federated edge learning,” in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), 2020, pp. 1–6. [36] M.-C. Lee, A. F. Molisch, N. Sastry, and A. Raman, “Individual preference probability modeling and parameterization for video content in wireless caching networks,” IEEE/ACM Trans. Netw., vol. 27, no. 2, pp. 676–690, 2019. |