帳號:guest(3.128.173.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡銘宗
作者(外文):Tsai, Ming-Tsung
論文名稱(中文):氧電漿處理閘極優先具有氮化銦鎵單量子井之氮化鋁鎵/氮化鎵高電子遷移率電晶體研究
論文名稱(外文):Study on Gate-First AlGaN/GaN High Electron Mobility Transistor with an InGaN Single Quantum Well Using Oxygen Plasma Treatment
指導教授(中文):黃智方
指導教授(外文):Huang, Chih-Fang
口試委員(中文):徐永珍
吳添立
口試委員(外文):Hsu, Yung-Jane
Wu, Tian-Li
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:108063551
出版年(民國):110
畢業學年度:110
語文別:中文
論文頁數:93
中文關鍵詞:氮化鋁鎵/氮化鎵高電子遷移率電晶體發光高電子遷移率電晶體氧電漿處理法氮化銦鎵量子井
外文關鍵詞:AlGaN/GaNHEMTLE-HEMTInGaNOxygen
相關次數:
  • 推薦推薦:0
  • 點閱點閱:412
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文嘗試使用氧電漿處理法(oxygen plasma treatment)製程鈍化p型氮化鎵的效果來製作高電子遷移率電晶體(High Electron Mobility Transistor, HEMT)以及發光高電子遷移率電晶體(Light Emitting High Electron Mobility Transistor, LE-HEMT),並且同時進行p型氮化鎵乾蝕刻的元件作為對照組,藉此比較氧電漿處理法製程對元件所帶來的影響。
從實驗結果來看,我們展示了閾值電壓(threshold voltage, Vth)為0.5 V的常關型氮化鋁鎵/氮化鎵高電子遷移率電晶體,其閾值電壓與對照組相比十分接近,而其片電阻(sheet resistance, Rsh)為2590 Ω/□,在閘極電壓為4 V時,特徵導通電阻(specific on-state resistance, Ron,sp)為2.48 mΩ-cm2,閘極6 V時的飽和電流(saturation current, Isat)為183.81 mA/mm。此外,經過氧電漿處理的發光高電子遷移率電晶體的閾值電壓則為 -2.7 V,閘極4 V的特徵導通電阻為2.76 mΩ-cm2,閘極6 V時的飽和電流為279.91 mA/mm。
至於發光高電子遷移率電晶體的電致發光,本實驗發現氧電漿處理法與p型氮化鎵乾蝕刻法相比,並不會改變發光波長,並且在原本的磊晶層新增了高濃度n型電流擴散層之後,成功使發光區域變均勻,不過電晶體的閘極控制力也因此消失。
In this thesis, oxygen plasma treatment process to passivate p-GaN is used to fabricate HEMT(High Electron Mobility Transistor) and LE-HEMT(Light Emitting High Electron Mobility Transistor). At the same time, these transistors fabricated by p-GaN dry etch process are compared as the control group.
From the experiment, normally off AlGaN/GaN HEMTs with a Vth(thresholdvoltage)=0.5 V are demonstrated. Vth is roughly the same compared with the control group. Rsh(sheet resistance) is 2590 Ω/□. When the gate voltage is 4 V, Ron,sp(specific on-state resistance) is 2.48 mΩ-cm2. When the gate voltage is 6 V, Isat(saturation current) is 183.81 mA/mm. On the other hand, the Vth of the oxygen plasma treated LE-HEMT is -2.7 V, and when the gate voltage is 4 V, the differential Ron,sp is 2.76 mΩ-cm2. When the gate voltage is 6 V, Isat is 279.91 mA/mm.
As for the eletroluminescence of the LE-HEMT, we discover that oxygen plasma treatment will not change the wavelength of the emitted light compared with the control group. When an n+ current spreading layer is inserted in the epi, the light emitting region is more uniform, but the gate control of the channel in the transistor will be lost.
摘要 i
Abstract ii
誌謝 iii
1 序論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 氮化鎵/氮化鋁鎵異質結構 3
1.2.2 氮化鎵發光二極體 4
1.2.3 電晶體與二極體單片集成 5
1.2.4 氧電漿處理之常關型高電子遷移率電晶體 7
1.2.5 研究方向 8
1.2.6 論文架構 8
2 原理簡介與關鍵製程 9
2.1 氮化鎵材料特性 9
2.1.1 自發性極化與壓電極化 9
2.1.2 氮化鎵/氮化鋁鎵異質結構 10
2.2 高電子遷移率電晶體 12
2.2.1 空乏型元件 12
2.2.2 增強型元件 12
2.3 發光元件 15
2.4 單量子井發光高電子遷移率電晶體 18
2.5 關鍵製程 19
2.5.1 p 型氮化鎵歐姆接觸 (p­GaN ohmic contact) 19
2.5.2 p 型氮化鎵自我對準蝕刻製程 (p­GaN self­aligned etching process) 20
2.5.3 氧電漿處理法製程 (oxygen plasma treatment) 21
3 元件結構及製作流程 23
3.1 磊晶結構 23
3.2 乾蝕刻元件製作流程 24
3.2.1 對準記號蝕刻 (MASK 1) 25
3.2.2 元件隔離 (MASK 2) 27
3.2.3 表面處理與氧化銦錫沉積 28
3.2.4 氧化銦錫濕式蝕刻 (MASK 3) 29
3.2.5 p 型氮化鎵乾式蝕刻 (MASK 3) 31
3.2.6 n 型歐姆接觸金屬 (MASK 4) 32
3.2.7 襯墊金屬 (MASK 5、MASK 6) 34
3.3 氧電漿處理元件製作流程 35
3.3.1 對準記號蝕刻 (MASK 1) 36
3.3.2 元件隔離 (MASK 2) 36

3.3.3 表面處理與氧化銦錫沉積 36
3.3.4 氧化銦錫濕式蝕刻 (MASK 3) 36
3.3.5 p 型氮化鎵預蝕刻 (MASK 4) 37
3.3.6 n 型歐姆接觸金屬 (MASK 4) 38
3.3.7 氧電漿處理 39
3.3.8 襯墊金屬 (MASK 5、MASK 6) 40
3.4 元件尺寸與俯視圖 41

4 量測結果與分析 42
4.1 結構 A 之量測結果 42
4.1.1 TLM 測試結構 43
4.1.2 直流電性量測與分析 45
4.1.3 氧電漿元件後退火處理量測 55
4.1.4 簡易發光量測 66
4.2 結構 B 之量測結果 69
4.2.1 TLM 測試結構 70
4.2.2 直流電性量測與分析 72
4.2.3 氧電漿元件後退火處理量測 79
4.2.4 簡易發光量測 87

5 結論與未來展望 90
參考文獻 91
[1]L. Spaziani and L. Lu, “Silicon, GaN and SiC: Theres Room for All: An Application Space Overview of Device Considerations,” 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 8–11, May 2018.

[2]P. Perlin, I. Gorczyca, T. Suski, P. Wisniewski, S. Lepkowski, N. E. Christensen, A. Svane, M. Hansen, S. P. Denbaars, B. Damilano, N. Grandjean, and J. Massies, “Influence of Pressure on the Optical Properties of InxGa1−xN Epilayers and Quantum Structures,” Physical Review B, vol. 64, no. 11, p. 115319, 2001.

[3]Y. Cai, X. Zou, C. Liu, and K. M. Lau, “Voltage-Controlled GaN HEMT-LED Devices as Fast-Switching and Dimmable Light Emitters,” IEEE Electron Device Letters, vol. 39, no. 2, pp. 224–227, 2018.

[4]M. A. Khan, J. N. Kuznia, J. M. V. Hove, N. Pan, and J. Carter, “Observation of a Two‐Dimensional Electron Gas in Low Pressure Metalorganic Chemical Vapor Deposited GaN‐AlxGa1−xN Heterojunctions,” Applied Physics Letters, vol. 60, no. 24, pp. 3027–3029, 1992.

[5]N.-Q. Zhang, S. Keller, G. Parish, S. Heikman, S. Denbaars, and U. Mishra, “High Breakdown GaN HEMT with Overlapping Gate Structure,” IEEE Electron Device Letters, vol. 21, no. 9, pp. 421–423, 2000.

[6]J. Liu, Y. Zhou, J. Zhu, K. Lau, and K. Chen, “AlGaN/GaN/InGaN/GaN DH-HEMTs with an InGaN Notch for Enhanced Carrier Confinement,” IEEE Electron Device Letters, vol. 27, no. 1, pp. 10–12, 2006.

[7]F. Medjdoub, J. Derluyn, K. Cheng, M. Leys, S. Degroote, D. Marcon, D. Visalli, M. V. Hove, M. Germain, and G. Borghs, “Low On-Resistance High-Breakdown Normally Off AlN/GaN/AlGaN DHFET on Si Substrate,” IEEE Electron Device Letters, vol. 31, no. 2, pp. 111–113, 2010.

[8]S. Nakamura, M. Senoh, and T. Mukai, “High‐Power InGaN/GaN Double‐Heterostructure Violet Light Emitting Diodes,” Applied Physics Letters, vol. 62, no. 19, pp. 2390–2392, 1993.

[9]S. Nakamura, T. Mukai, and M. Senoh, “High‐brightness InGaN/AlGaN Double‐Heterostructure Blue‐Green‐Light‐Emitting Diodes,” Journal of Applied Physics, vol. 76, no. 12, pp. 8189–8191, 1994.

[10]S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Japanese Journal of Applied Physics, vol. 31, no. Part 2, No. 2B, 1992.

[11]S.-J. Lee, C.-Y. Cho, S.-H. Hong, S.-H. Han, S. Yoon, S.-T. Kim, and S.-J. Park, “Enhanced Optical Power of InGaN/GaN Light-Emitting Diode by AlGaN Interlayer and Electron Blocking Layer,” IEEE Photonics Technology Letters, vol. 24, no. 22, pp. 1991–1994, 2012.

[12]A. M. Armstrong, B. N. Bryant, M. H. Crawford, D. D. Koleske, S. R. Lee, and J. J. Wierer, “Defect-Reduction Mechanism for Improving Radiative Efficiency in InGaN/GaN Light-Emitting Diodes Using InGaN Underlayers,” Journal of Applied Physics, vol. 117, no. 13, p. 134501, 2015.

[13]D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, and K. Ohkawa, “Demonstration of Low Forward Voltage InGaN-Based Red LEDs,” Applied Physics Express, vol. 13, no. 3, p. 031001, 2020.

[14]Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic Integration of Light-Emitting Diodes and Power Metal-Oxide-Semiconductor Channel High-Electron-Mobility Transistors for Light-Emitting Power Integrated Circuits in GaN on Sapphire Substrate,” Applied Physics Letters, vol. 102, no. 19, p. 192107, 2013.

[15]C. Liu, Y. Cai, Z. Liu, J. Ma, and K. M. Lau, “Metal-Interconnection-Free Integration of InGaN/GaN Light Emitting Diodes with AlGaN/GaN High Electron Mobility Transistors,” Applied Physics Letters, vol. 106, no. 18, p. 181110, 2015.

[16]C. Sun, R. Hao, N. Xu, T. He, F. Shi, G. Yu, L. Song, Z. Huang, R. Huang, Y. Zhao, R. Wang, Y. Cai, and B. Zhang, “Normally-Off P-GaN/AlGaN/GaN High-Electron-Mobility Transistors Using Oxygen Plasma Treatment,” Applied Physics Express, vol. 12, no. 5, p. 051001, 2019.

[17]W. Paszkowicz, “X-ray Powder Diffraction Data for Indium Nitride,” Powder Diffraction, vol. 14, no. 4, pp. 258–260, 1999.

[18]O. Ambacher, R. Dimitrov, M. Stutzmann, B. Foutz, M. Murphy, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Chumbes, B. Green, A. Sierakowski, W. Schaff, and L. Eastman, “Role of Spontaneous and Piezoelectric Polarization Induced Effects in Group-III Nitride Based Heterostructures and Devices,” physica status solidi (b), vol. 216, no. 1, pp. 381–389, 1999.

[19]F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoc, “Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs,” IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 450–457, 2001.

[20]Y. Cai, Z. Cheng, W. Chak, W. Tang, K. Chen, and K. M. Lau, “Monolithic Integration of Enhancement- and Depletion-Mode AlGaN/GaN HEMTs for GaN Digital Integrated Circuits,” IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., p. 4, 2005.

[21]J. Moon, S. Wu, D. Wong, I. Milosavljevic, A. Conway, P. Hashimoto, M. Hu, M. Antcliffe, and M. Micovic, “Gate-Recessed AlGaN-GaN HEMTs for High-Performance Millimeter-Wave Applications,” IEEE Electron Device Letters, vol. 26, no. 6, pp. 348–350, 2005.

[22]G. Greco, F. Iucolano, and F. Roccaforte, “Review of Technology for Normally-Off HEMTs with P-GaN Gate,” Materials Science in Semiconductor Processing, vol. 78, pp. 96–106, 2018.

[23]H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for High Internal Quantum Efficiency Green InGaN Light-Emitting Diodes with Large Overlap Quantum Wells,” Optics Express, vol. 19, no. S4, 2011.

[24]T. Wang, D. Nakagawa, J. Wang, T. Sugahara, and S. Sakai, “Photoluminescence Investigation of InGaN/GaN Single Quantum Well and Multiple Quantum Wells,” Applied Physics Letters, vol. 73, no. 24, pp. 3571–3573, 1998.

[25]Y.-Y. Zhang and G.-R. Yao, “Performance Enhancement of Blue Light-Emitting Diodes with AlGaN Barriers and a Special Designed Electron-Blocking Layer,” Journal of Applied Physics, vol. 110, no. 9, p. 093104, 2011.

[26]C.-C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. Denbaars, and D. Feezell, “High-Power, Low-Efficiency-Droop Semipolar 202 ̅1 ̅ Single-Quantum-Well Blue Light-Emitting Diodes,” Applied Physics Express, vol. 5, no. 6, p. 062103, 2012.

[27]L.-H. Peng, C.-W. Chuang, and L.-H. Lou, “Piezoelectric Effects in the Optical Properties of Strained InGaN Quantum Wells,” Applied Physics Letters, vol. 74, no. 6, pp. 795–797, 1999.
(此全文20261117後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *