|
[1] P. Bergveld, "Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology," IEEE Trans. Biomed. Circuits Syst., vol. 19, no. 5, pp. 342–351, 1972. [2] W. M. Siu and R. S. C. Cobbold, "Basic properties of the electrolyte-SiO-Si system: Physical and theoretical aspects," IEEE Trans. Electron Devices, vol. 26, pp. 1805-1815, 1979. [3] L. Bousse, J. Shott, and J. D. Meindl, "A process for the combined fabrication of ion sensors and CMOS circuits," IEEE Electron Device Lett., vol. 9, no. I, 1988. [4] H. S. Wong and M. H. White, "A-self-contained-CMOS-integrated-pH-sensor," IEEE International Electron Devices Meeting, vol. 88, pp. 658-661, 1988. [5] P. Bergveld, "Thirty years of ISFETOLOGY—what happened in the past 30 years and what may happen in the next 30 years," Sens. Actuators B: Chem., vol. 88, pp. 1–20, 2003. [6] T. Matsuo, M. Esashi, and H. Abe, "pH ISFET's using Al2O3, Si3N4 and SiO2 gate thin films," IEEE Trans. Electron Devices, vol. ED-26, pp. 1856-1857, 1979. [7] H. Abe, M. Esashi, and T. Matsuo, "ISFET’s using inorganic gate thin films," IEEE Trans. Electron Devices, vol. ED-26, no. 12, pp. 1939-1944, 1979. [8] S. Sinha, R. Rathore, S. K. Sinha, R. Sharma, R. Mukhiya, and V. K. Khanna, "Modeling and simulation of ISFET microsensor," ISSS International Conference on Smart Materials, pp. 14-27, 2014. [9] J. C. Chou, C. Y. Weng, and H. M. Tsai, "Study on the temperature effect of Al2O3 gate pH-ISFET," Sens. Actuators B, vol. 81, pp. 152-157, 2002. [10] J. C. Chou and J. S. Lin, "pH response of a-Si:H ISFET," Proc. SPIE, The International Symposium on Photonics and Applications, vol. 3897, pp. 758–766,1999. [11] H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung,"Study of amorphous tin oxide thin films for ISFET applications," Sens. Actuators B, vol. 50, pp. 104-109, 1998. [12] D.-H. Kwon, B.-W. Cho, C.-S. Kim, and B.-K. Sohn, "Effects of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET," Sens. Actuators B: Chem., vol. 34, pp. 441-445, 1996. [13] J. T. Smith, S. S. Shah, M. Goryll, J. R. Stowell, and D. R. Allee, "Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer," IEEE Sensors J., vol. 14, no. 4, pp. 937-938, 2013. [14] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid, and G. Schitter, "Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator," J. Appl. Phys., vol. 96, no. 11, pp. 6431-6438, 2004. [15] J. T. Mabeck and G. G. Malliaras, "Chemical and biological sensors based on organic thin-film transistors," Anal. Bioanal. Chem., vol. 384, pp. 343–353, 2006. [16] S. R. Chang, C. H. Chang, J. S. Lin, M. S. Lu, Y. T. Lee, S. R. Yeh, and H. Chen, "Die-level, post-CMOS processes for fabricating open-gate, field-effect biosensor arrays with on-chip circuitry," J. Micromech. Microeng., vol. 18, no. 11, 2008. [17] D.-C. Li, P.-H. Yang, and M. S.-C. Lu, "CMOS open-gate ion-sensitive field-effect transistors for ultrasensitive dopamine detection," IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2761-2767, 2010. [18] M. J. Milgrew, M. O. Riehle, and D. R. S. Cumming, "A large transistor-based sensor array chip for direct extracellular imaging," Sens. Actuators B, vol. 111- 112, pp. 347-353, 2005. [19] M. Sohbati and C. Toumazou, "Dimension and shape effects on the ISFET performance," IEEE Sensors J., vol. 15, no. 3, pp. 1670-1679, 2015. [20] G. Xu, J. Abbott, and D. Ham, "Optimization of CMOS-ISFET-based biomolecular sensing: analysis and demonstration in DNA detection," IEEE Trans. Electron Devices, pp. 1-8, 2016. [21] J.-R. Zhang, M. Rupakula, F. Bellando, E. G. Cordero, J. Longo, F. Wildhaber, G. Herment, H. Guérin, and A. M. Ionescu, "All CMOS integrated 3D-extended metal gate ISFETs for pH and multi-ion (Na+, K+, Ca2+) sensing," IEEE International Electron Devices Meeting, vol. 18, pp. 269-272, 2018. [22] M. Spijkman, E. C. P. Smits, J. F. M. Cillessen, F. Biscarini, P. W. M. Blom, and D. M. de Leeuw, "Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors," Appl. Phys. Lett., vol. 98, no. 4, 2011. [23] M.-J. Spijkman, J. J. Brondijk, T. C. T. Geuns, E. C. P. Smits, T. Cramer, and F. Zerbetto, "Dual-Gate Organic Field-Effect Transistors as Potentiometric Sensors in Aqueous Solution," Adv. Funct. Mater., vol. 20, no. 6, pp. 898-905, 2010. [24] O. Knopfmacher, A. Tarasov, W. Fu, M. Wipf, B. Niesen, and M. Calame, "Nernst limit in dual-gated Si-nanowire FET sensors," Nano Lett., vol. 10, no. 6, pp. 2268-74, 2010. [25] L.-C. Yen, M.-T. Tang, C.-Y. Tan, T.-M. Pan, and T.-S. Chao, "Effect of sensing film thickness on sensing characteristics of dual-gate poly-Si ion-sensitive field-effect-transistors," IEEE Electron Device Lett., vol. 35, no. 12, pp. 1302–1304, 2014. [26] H.-J. Jang, J.-G. Gu, and W.-J. Cho, "Sensitivity enhancement of amorphous InGaZnO thin film transistor based extended gate field-effect transistors with dual-gate operation," Sens. Actuators B: Chem., vol. 181, pp. 880-884, 2013. [27] K. B. Parizi, A. J. Yeh, A. S. Y. Poon, and H. S. P. Wong, "Exceeding Nernst limit (59 mV/pH): CMOS-based pH sensor for autonomous applications," IEEE International Electron Devices Meeting, vol. 12, pp. 557-560, 2012. [28] N. Kumar, J. Kumar, and S. Panda, "Back-Channel electrolyte-gated a-IGZO dual-gate thin-film transistor for enhancement of pH sensitivity over Nernst limit," IEEE Electron Device Lett., vol. 37, no. 4, pp. 500-503, 2016. [29] J.-K. Park, H.-J. Jang, J.-T. Park, and W.-J. Cho, "SOI dual-gate ISFET with variable oxide capacitance and channel thickness," Solid State Electron., vol. 97, pp. 2-7, 2014. [30] Y.-J. Huang, C.-C. Lin, J.-C. Huang, C.-H. Hsieh, C.-H. Wen, T.-T. Chen, L.-S. Jeng, C.-K. Yang, J.-H. Yang, F. Tsui, Y.-S. Liu, and M. Chen, "High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC," IEEE International Electron Devices Meeting, vol. 15, pp. 747-750, 2015. [31] F. Patolsky, G. F. Zheng, and C. M. Lieber, "Nanowire-based biosensors," Anal. Chem., vol. 78, pp. 4260–4269, 2006. [32] M. Curreli, R. Zhang, F. N. Ishikawa, H.-K. Chang, R. J. Cote, C. Zhou, and M. E. Thompson, "Real-time, label-free detection of biological entities using nanowire-based FETs," IEEE Trans. Nanotechnol., vol. 7, no. 6, pp. 651-667, 2008. [33] J. W. Ko, J. M. Woo, J. Ahn, J. H. Cheon, J. H. Lim, and S. H. Kim, "Multi-order dynamic range DNA sensor using a gold decorated SWCNT random network," ACS Nano, vol. 5, no. 6, pp. 4365-4372, 2011. [34] K. Kim, C. Park, T. Rim, M. Meyyappan, and J. S. Lee, "Electrical and pH sensing characteristics of Si nanowire-based suspended FET biosensors," IEEE International Conference on Nanotechnology, pp. 768-771, 2014. [35] S. Purushothaman, C. Toumazou, and J. Georgiou, "Towards fast solid state DNA sequencing," IEEE International Symposium on Circuits and Systems, pp.169–172, 2002. [36] S. Purushothaman, C. Toumazou, and C. Ou, "Protons and single nucleotide polymorphism detection: a simple use for the ion sensitive field effect transistor," Sens. Actuators B: Chem., vol. 114, pp. 964–968, 2006. [37] D. Garner, H. Bai, P. Georgiou, T. Constandinou, S. Reed, L. Shepherd, W. Wong, K. Lim, and C. Toumazou, "A multichannel DNA SoC for rapid point-of care gene detection, " IEEE Conference on Solid-State Circuits, pp. 492–493, 2010. [38] Y. Jiang, X. Liu, T. C. Dang, X. Huang, H. Feng, Q. Zhang, and H. Yu, "A high-sensitivity potentiometric 65-nm CMOS ISFET sensor for rapid e. coli screening," IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 2, pp. 402-415, 2018. [39] X. Huang, H. Yu, X. Liu, Y. Jiang, M. Yan, and D. Wu, "A dual-mode large-arrayed CMOS ISFET sensor for accurate and high-throughput pH sensing in biomedical diagnosis," IEEE Trans. Biomed. Eng., vol. 62, no. 9, pp. 2224-2233, 2015. [40] S. M. Peter, M. K. James, P. B. Dhanusha, and H. Mathew, "Dual mode CMOS ISFET sensor for DNA sequencing," International Conference on Intelligent Computing, Instrumentation and Control Technologies, pp. 307-309, 2017. [41] C. H. Lin, C. H. Hung, C. Y. Hsiao, H. C. Lin, F. H. Ko, and Y. S. Yang, "Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA," Biosens. Bioelectron., vol. 24, pp. 3019-3024, 2009. [42] J. Musayev, Y. Adlgüzel, H. Külah, S. Eminoglu, and T. Akln, "Label-Free DNA detection using a charge sensitive CMOS microarray sensor chip," IEEE Sensors J., vol. 14, no.5, pp. 1608-1616, 2014. [43] A. Gao, N. Lu, P. Dai, T. Li, H. Pei, X. Gao, Y. Gong, Y. Wang, and C. Fan, "Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids," Nano Lett., vol. 11, no. 9, pp. 3974–3978, 2011. [44] A. Gao, N. Lu, Y. Wang, P. Dai, T. Li, X. Gao, Y. Wang, and C. Fan, "Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors," Nano Lett., vol. 12, no. 10, pp. 5262–5268, 2012. [45] Y. Maruyama, S. Terao, and K. Sawada, "Label free CMOS DNA image sensor based on the charge transfer technique," Biosens. Bioelectron., vol. 24, pp. 3108–3112, 2009 [46] T. Uno, H. Tabata, and T. Kawai, "Peptide-nucleic acid-modified ion-sensitive field-effect transistor-based biosensor for direct detection of DNA hybridization," Anal. Chem., vol. 79, pp. 52–59, 2007. [47] S. Li, K. Huang, Q. Fan, S. Yang, T. Shen, T. Mei, J. Wang, X. Wang, G. Chang, and J. Li, "Highly sensitive solution-gated graphene transistors for label-free DNA detection," Biosens. Bioelectron., vol. 136, pp. 91-96, 2019. [48] G. A. J. Besselink, R. B. M. Schasfoort, and P. Bergveld, "Modification of ISFETs with a monolayer of latex beads for specific detection of proteins," Biosens. Bioelectron., vol. 18, pp. 1109-1114, 2003. [49] D. S. Su, P. Y. Chen, H. C. Chiu, C. C. Han, T. J. Yen, and H. M. Chen, "Disease antigens detection by silicon nanowires with the efficiency optimization of their antibodies on a chip," Biosens. Bioelectron., vol. 141, pp. 1209-1214, 2019. [50] H. Yang and T. Sakata, "Molecular-charge-contact-based ion-sensitive field-effect transistor sensor in microfluidic system for protein sensing," Sensors, vol. 19, pp. 3393-3401, 2019. [51] S. Park, M. Kim, D. Kim, S. H. Kang, and K. H. Lee, "Interfacial charge regulation of protein blocking layers in transistor biosensor for direct measurement in serum," Biosens. Bioelectron., vol. 147, pp. 1737-1744, 2020. [52] P. W. Yen, C. W. Huang, Y. J. Huang, M. C. Chen, H. H. Liao, S. S. Lu, and C. T. Lin, "A device design of an integrated CMOS poly-silicon biosensor-on-chip to enhance performance of biomolecular analytes in serum samples," Biosens. Bioelectron., vol. 61, pp. 112-118, 2014. [53] M. Hinnermo, A. Makaraviciute, P. Ahlberg, J. Olsson, Z. Zhang, S. L. Zhang, and Z. B. Zhang, "Protein sensing beyond the Debye length using graphene field-effect transistors," IEEE Sensors J., vol. 18, pp. 6497-6503, 2018. [54] H. Helmholtz, "Studien über elektrische Grenzschichten," Annalen der Physik, vol. 7, pp. 837-882, 1879. [55] M. Gouy, "Sur la constitution de la charge électrique a la surface d'un electrolyte," J. de Physicque et Appliquee, vol. 9, pp. 457-468, 1910. [56] D. L. Chapman, Phil. Mag., vol. 25, pp. 475-475, 1913. [57] O. Stern, Z. Elektrochem, vol. 30, pp. 508, 1924. [58] E. Stern and R. Wagner, "Importance of the Debye screening length on nanowire field effect transistor sensors," Nano Lett., vol. 7, no. 11, pp. 3405-3409, 2007. [59] G. S. Kulkarni and Z. Zhong, "Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor," Nano Lett., vol. 12, pp. 719–723, 2012. [60] C. Laborde, F. Pittino, H. A. Verhoeven, S. G. Lemay, L. Selmi, M. A. Jongsma, and F. P. Widdershoven, "Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays," Nat. Nanotechnol., vol. 10, no. 9, pp. 791-795, 2015. [61] R. Elnathan, M. Kwiat, A. Pevzner, Y. Engel, L. Burstein, A. Khatchtourints, A. Lichtenstein, R. Kantaev, and Fernando Patolsky, "Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices," Nano Lett., vol. 12, no. 10, pp. 5245-5254, 2012. [62] N. Gao, W. Zhou, X. Jiang, G. Hong, T.-M. Fu, and C. M. Lieber, "General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors," Nano Lett., vol. 15, no. 3, pp. 2143-2148, 2015. [63] I. Sarangadharana, A. Regmia, Y. W. Chen, C. P. Hsu, P. Chen, W. H. Chang, G. Y. Lee, J. I. Chyi, S. C. Shiesh, G. B. Lee, and Y. L. Wang, "High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN high electron mobility transistor (HEMT) biosensors," Biosens. Bioelectron., vol. 100, pp. 282-289, 2018. [64] C. Lee, Y. W. Chen, and M. S. C. Lu, "CMOS Biosensors for the Detection of DNA Hybridization in High Ionic-Strength Solutions," IEEE Sensors J., vol. 21, no. 4, pp. 4135-4142, 2021. [65] S. Mandeep, K. Navpreet, and C. Navpree, "The role of self-assembled monolayers in electronic devices," J. Mater. Chem. C, vol. 8, pp. 3938–3955, 2020.
|