帳號:guest(3.139.97.233)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張峻維
作者(外文):Chang, Chun-Wei
論文名稱(中文):高離子濃度下進行DNA感測之0.18 μm CMOS離子感測場效電晶體陣列開發
論文名稱(外文):Development of 0.18 μm CMOS ion-sensitive field-effect transistor array for DNA detection under high ionic concentration
指導教授(中文):盧向成
指導教授(外文):Lu, Shiang-Cheng
口試委員(中文):林致廷
劉承賢
口試委員(外文):Lin, Chih-Ting
Liu, Cheng-Hsien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:108063549
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:93
中文關鍵詞:離子感測場效電晶體電荷遮蔽效應德拜長度電雙層pH值去氧核醣核酸
外文關鍵詞:ion-sensitive field-effect transistor(ISFET)charge screening effectDebye lengthelectric double layerpHDNA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:271
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著半導體產業的蓬勃發展,電路設計的技術已經相當成熟,使得跨領域的研究也開始多元發展。生物醫學感測晶片便是跨領域研究的其中之一,藉由將電路與微機電系統整合於同一晶片上,並透過表面改質與修飾方法,感測各式各樣的生物分子以利於進行生物醫學的多方面研究。
本論文提出利用離子感測場效電晶體(ion-sensitive field-effect transistors)在高離子濃度的溶液中,即時檢測低濃度的B型肝炎病毒DNA分子。離子感測場效電晶體是使用TSMC 0.18μm CMOS製程製作而成,並且藉由自組單層膜固定法將表面官能基與DNA分子修飾於感測器表面的感測層。在電路設計方面,設計8×8陣列式ISFET感測器,將ISFET作為MOS電容並將電路操作於高頻,觀察高離子強度下,微小德拜長度(Debye length)所造成的電荷遮蔽效應的影響。
此8×8陣列式ISFET感測器,在pH值感測方面,可得到44.04 mV/pH的感測度;在DNA分子感測方面,由於DNA分子於水溶液中帶負電荷,因此當target DNA與表面probe DNA進行雜交反應後,ISFET電容會上升,使得輸出頻率變化為下降趨勢,且高頻操作下在1X PBS的緩衝溶液下量測,可以感測到低濃度的target DNA。此外,量測到DNA雜交的反應時間約為11分鐘。

With the vigorous development of the semiconductor industry, the technology of circuit design has become quite mature, and cross-disciplinary research has become more diversified and biomedical sensors are one of them. By integrating readout circuits and MEMS sensors on the same chip with functionalized surface, a variety of biomolecules can be detected for various biomedical researches.
This paper proposes to use ion-sensitive field-effect transistors (ISFETs) to detect low-concentration hepatitis B virus DNA molecules in high ionic-strength solutions. The ISFETs are manufactured using TSMC 0.18 μm CMOS process. DNA molecules are immobilized on the functionalized SiO2 surface through self-assembled monolayer. An 8×8 ISFET sensor array is developed. The ISFET is implemented as a MOS capacitor in an oscillator readout operating at high frequency to observe the charge screening effect caused by the small Debye length under high ionic strength.
The sensors exhibit a pH sensitivity of 44.04 mV/pH in terms of the threshold voltage shift. Since DNA molecules are negatively charged in an aqueous solution, the ISFET MOS capacitance increases when the target DNAs hybridize with the probe DNAs, causing the output frequency to decrease. Under high-frequency operation, target DNA can be sensed in 1X PBS buffer solution with a reaction time near 11 minutes.

摘要----I
Abstract----II
致謝----III
目錄----IV
圖目錄----VI
表目錄----X
第1章 緒論----1
1-1 前言----1
1-2 文獻回顧----2
1-3 研究動機----6
第2章 設計與模擬----9
2-1 ISFET感測原理與設計----9
2-1-1 MOS電容原理----9
2-1-2 ISFET原理----17
2-1-3 ISFET等效電路模型----19
2-2 電路設計----23
2-2-1 電路架構----23
2-2-2 電路模擬----32
第3章 生物醫學實驗介紹----39
3-1 生物分子介紹—去氧核醣核酸(DNA)----39
3-2 表面修飾鍵結步驟----41
第4章 量測結果與分析----47
4-1 實驗與量測設備介紹----47
4-1-1 實驗設備介紹----47
4-1-2 量測設備介紹----49
4-2 晶片結構與PCB板封裝----52
4-3 量測結果----54
4-3-1 去離子水溶液中量測----54
4-3-2 ISFET元件之光感測實驗----56
4-3-3 pH值標準溶液中量測----57
4-3-4 不同離子強度的緩衝溶液中量測----59
4-3-5 DNA雜交(hybridization)的時間響應(time response)分析----61
4-3-6 DNA分子(HBV)量測實驗----63
第5章 結論與未來工作----77
參考文獻----78
附錄----86


[1] P. Bergveld, "Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology," IEEE Trans. Biomed. Circuits Syst., vol. 19, no. 5, pp. 342–351, 1972.
[2] W. M. Siu and R. S. C. Cobbold, "Basic properties of the electrolyte-SiO-Si system: Physical and theoretical aspects," IEEE Trans. Electron Devices, vol. 26, pp. 1805-1815, 1979.
[3] L. Bousse, J. Shott, and J. D. Meindl, "A process for the combined fabrication of ion sensors and CMOS circuits," IEEE Electron Device Lett., vol. 9, no. I, 1988.
[4] H. S. Wong and M. H. White, "A-self-contained-CMOS-integrated-pH-sensor," IEEE International Electron Devices Meeting, vol. 88, pp. 658-661, 1988.
[5] P. Bergveld, "Thirty years of ISFETOLOGY—what happened in the past 30 years and what may happen in the next 30 years," Sens. Actuators B: Chem., vol. 88, pp. 1–20, 2003.
[6] T. Matsuo, M. Esashi, and H. Abe, "pH ISFET's using Al2O3, Si3N4 and SiO2 gate thin films," IEEE Trans. Electron Devices, vol. ED-26, pp. 1856-1857, 1979.
[7] H. Abe, M. Esashi, and T. Matsuo, "ISFET’s using inorganic gate thin films," IEEE Trans. Electron Devices, vol. ED-26, no. 12, pp. 1939-1944, 1979.
[8] S. Sinha, R. Rathore, S. K. Sinha, R. Sharma, R. Mukhiya, and V. K. Khanna, "Modeling and simulation of ISFET microsensor," ISSS International Conference on Smart Materials, pp. 14-27, 2014.
[9] J. C. Chou, C. Y. Weng, and H. M. Tsai, "Study on the temperature effect of Al2O3 gate pH-ISFET," Sens. Actuators B, vol. 81, pp. 152-157, 2002.
[10] J. C. Chou and J. S. Lin, "pH response of a-Si:H ISFET," Proc. SPIE, The International Symposium on Photonics and Applications, vol. 3897, pp. 758–766,1999.
[11] H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung,"Study of amorphous tin oxide thin films for ISFET applications," Sens. Actuators B, vol. 50, pp. 104-109, 1998.
[12] D.-H. Kwon, B.-W. Cho, C.-S. Kim, and B.-K. Sohn, "Effects of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET," Sens. Actuators B: Chem., vol. 34, pp. 441-445, 1996.
[13] J. T. Smith, S. S. Shah, M. Goryll, J. R. Stowell, and D. R. Allee, "Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer," IEEE Sensors J., vol. 14, no. 4, pp. 937-938, 2013.
[14] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid, and G. Schitter, "Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator," J. Appl. Phys., vol. 96, no. 11, pp. 6431-6438, 2004.
[15] J. T. Mabeck and G. G. Malliaras, "Chemical and biological sensors based on organic thin-film transistors," Anal. Bioanal. Chem., vol. 384, pp. 343–353, 2006.
[16] S. R. Chang, C. H. Chang, J. S. Lin, M. S. Lu, Y. T. Lee, S. R. Yeh, and H. Chen, "Die-level, post-CMOS processes for fabricating open-gate, field-effect biosensor arrays with on-chip circuitry," J. Micromech. Microeng., vol. 18, no. 11, 2008.
[17] D.-C. Li, P.-H. Yang, and M. S.-C. Lu, "CMOS open-gate ion-sensitive field-effect transistors for ultrasensitive dopamine detection," IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2761-2767, 2010.
[18] M. J. Milgrew, M. O. Riehle, and D. R. S. Cumming, "A large transistor-based sensor array chip for direct extracellular imaging," Sens. Actuators B, vol. 111- 112, pp. 347-353, 2005.
[19] M. Sohbati and C. Toumazou, "Dimension and shape effects on the ISFET performance," IEEE Sensors J., vol. 15, no. 3, pp. 1670-1679, 2015.
[20] G. Xu, J. Abbott, and D. Ham, "Optimization of CMOS-ISFET-based biomolecular sensing: analysis and demonstration in DNA detection," IEEE Trans. Electron Devices, pp. 1-8, 2016.
[21] J.-R. Zhang, M. Rupakula, F. Bellando, E. G. Cordero, J. Longo, F. Wildhaber, G. Herment, H. Guérin, and A. M. Ionescu, "All CMOS integrated 3D-extended metal gate ISFETs for pH and multi-ion (Na+, K+, Ca2+) sensing," IEEE International Electron Devices Meeting, vol. 18, pp. 269-272, 2018.
[22] M. Spijkman, E. C. P. Smits, J. F. M. Cillessen, F. Biscarini, P. W. M. Blom, and D. M. de Leeuw, "Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors," Appl. Phys. Lett., vol. 98, no. 4, 2011.
[23] M.-J. Spijkman, J. J. Brondijk, T. C. T. Geuns, E. C. P. Smits, T. Cramer, and F. Zerbetto, "Dual-Gate Organic Field-Effect Transistors as Potentiometric Sensors in Aqueous Solution," Adv. Funct. Mater., vol. 20, no. 6, pp. 898-905, 2010.
[24] O. Knopfmacher, A. Tarasov, W. Fu, M. Wipf, B. Niesen, and M. Calame, "Nernst limit in dual-gated Si-nanowire FET sensors," Nano Lett., vol. 10, no. 6, pp. 2268-74, 2010.
[25] L.-C. Yen, M.-T. Tang, C.-Y. Tan, T.-M. Pan, and T.-S. Chao, "Effect of sensing film thickness on sensing characteristics of dual-gate poly-Si ion-sensitive field-effect-transistors," IEEE Electron Device Lett., vol. 35, no. 12, pp. 1302–1304, 2014.
[26] H.-J. Jang, J.-G. Gu, and W.-J. Cho, "Sensitivity enhancement of amorphous InGaZnO thin film transistor based extended gate field-effect transistors with dual-gate operation," Sens. Actuators B: Chem., vol. 181, pp. 880-884, 2013.
[27] K. B. Parizi, A. J. Yeh, A. S. Y. Poon, and H. S. P. Wong, "Exceeding Nernst limit (59 mV/pH): CMOS-based pH sensor for autonomous applications," IEEE International Electron Devices Meeting, vol. 12, pp. 557-560, 2012.
[28] N. Kumar, J. Kumar, and S. Panda, "Back-Channel electrolyte-gated a-IGZO dual-gate thin-film transistor for enhancement of pH sensitivity over Nernst limit," IEEE Electron Device Lett., vol. 37, no. 4, pp. 500-503, 2016.
[29] J.-K. Park, H.-J. Jang, J.-T. Park, and W.-J. Cho, "SOI dual-gate ISFET with variable oxide capacitance and channel thickness," Solid State Electron., vol. 97, pp. 2-7, 2014.
[30] Y.-J. Huang, C.-C. Lin, J.-C. Huang, C.-H. Hsieh, C.-H. Wen, T.-T. Chen, L.-S. Jeng, C.-K. Yang, J.-H. Yang, F. Tsui, Y.-S. Liu, and M. Chen, "High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC," IEEE International Electron Devices Meeting, vol. 15, pp. 747-750, 2015.
[31] F. Patolsky, G. F. Zheng, and C. M. Lieber, "Nanowire-based biosensors," Anal. Chem., vol. 78, pp. 4260–4269, 2006.
[32] M. Curreli, R. Zhang, F. N. Ishikawa, H.-K. Chang, R. J. Cote, C. Zhou, and M. E. Thompson, "Real-time, label-free detection of biological entities using nanowire-based FETs," IEEE Trans. Nanotechnol., vol. 7, no. 6, pp. 651-667, 2008.
[33] J. W. Ko, J. M. Woo, J. Ahn, J. H. Cheon, J. H. Lim, and S. H. Kim, "Multi-order dynamic range DNA sensor using a gold decorated SWCNT random network," ACS Nano, vol. 5, no. 6, pp. 4365-4372, 2011.
[34] K. Kim, C. Park, T. Rim, M. Meyyappan, and J. S. Lee, "Electrical and pH sensing characteristics of Si nanowire-based suspended FET biosensors," IEEE International Conference on Nanotechnology, pp. 768-771, 2014.
[35] S. Purushothaman, C. Toumazou, and J. Georgiou, "Towards fast solid state DNA sequencing," IEEE International Symposium on Circuits and Systems, pp.169–172, 2002.
[36] S. Purushothaman, C. Toumazou, and C. Ou, "Protons and single nucleotide polymorphism detection: a simple use for the ion sensitive field effect transistor," Sens. Actuators B: Chem., vol. 114, pp. 964–968, 2006.
[37] D. Garner, H. Bai, P. Georgiou, T. Constandinou, S. Reed, L. Shepherd, W. Wong, K. Lim, and C. Toumazou, "A multichannel DNA SoC for rapid point-of care gene detection, " IEEE Conference on Solid-State Circuits, pp. 492–493, 2010.
[38] Y. Jiang, X. Liu, T. C. Dang, X. Huang, H. Feng, Q. Zhang, and H. Yu, "A high-sensitivity potentiometric 65-nm CMOS ISFET sensor for rapid e. coli screening," IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 2, pp. 402-415, 2018.
[39] X. Huang, H. Yu, X. Liu, Y. Jiang, M. Yan, and D. Wu, "A dual-mode large-arrayed CMOS ISFET sensor for accurate and high-throughput pH sensing in biomedical diagnosis," IEEE Trans. Biomed. Eng., vol. 62, no. 9, pp. 2224-2233, 2015.
[40] S. M. Peter, M. K. James, P. B. Dhanusha, and H. Mathew, "Dual mode CMOS ISFET sensor for DNA sequencing," International Conference on Intelligent Computing, Instrumentation and Control Technologies, pp. 307-309, 2017.
[41] C. H. Lin, C. H. Hung, C. Y. Hsiao, H. C. Lin, F. H. Ko, and Y. S. Yang, "Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA," Biosens. Bioelectron., vol. 24, pp. 3019-3024, 2009.
[42] J. Musayev, Y. Adlgüzel, H. Külah, S. Eminoglu, and T. Akln, "Label-Free DNA detection using a charge sensitive CMOS microarray sensor chip," IEEE Sensors J., vol. 14, no.5, pp. 1608-1616, 2014.
[43] A. Gao, N. Lu, P. Dai, T. Li, H. Pei, X. Gao, Y. Gong, Y. Wang, and C. Fan, "Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids," Nano Lett., vol. 11, no. 9, pp. 3974–3978, 2011.
[44] A. Gao, N. Lu, Y. Wang, P. Dai, T. Li, X. Gao, Y. Wang, and C. Fan, "Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors," Nano Lett., vol. 12, no. 10, pp. 5262–5268, 2012.
[45] Y. Maruyama, S. Terao, and K. Sawada, "Label free CMOS DNA image sensor based on the charge transfer technique," Biosens. Bioelectron., vol. 24, pp. 3108–3112, 2009
[46] T. Uno, H. Tabata, and T. Kawai, "Peptide-nucleic acid-modified ion-sensitive field-effect transistor-based biosensor for direct detection of DNA hybridization," Anal. Chem., vol. 79, pp. 52–59, 2007.
[47] S. Li, K. Huang, Q. Fan, S. Yang, T. Shen, T. Mei, J. Wang, X. Wang, G. Chang, and J. Li, "Highly sensitive solution-gated graphene transistors for label-free DNA detection," Biosens. Bioelectron., vol. 136, pp. 91-96, 2019.
[48] G. A. J. Besselink, R. B. M. Schasfoort, and P. Bergveld, "Modification of ISFETs with a monolayer of latex beads for specific detection of proteins," Biosens. Bioelectron., vol. 18, pp. 1109-1114, 2003.
[49] D. S. Su, P. Y. Chen, H. C. Chiu, C. C. Han, T. J. Yen, and H. M. Chen, "Disease antigens detection by silicon nanowires with the efficiency optimization of their antibodies on a chip," Biosens. Bioelectron., vol. 141, pp. 1209-1214, 2019.
[50] H. Yang and T. Sakata, "Molecular-charge-contact-based ion-sensitive field-effect transistor sensor in microfluidic system for protein sensing," Sensors, vol. 19, pp. 3393-3401, 2019.
[51] S. Park, M. Kim, D. Kim, S. H. Kang, and K. H. Lee, "Interfacial charge regulation of protein blocking layers in transistor biosensor for direct measurement in serum," Biosens. Bioelectron., vol. 147, pp. 1737-1744, 2020.
[52] P. W. Yen, C. W. Huang, Y. J. Huang, M. C. Chen, H. H. Liao, S. S. Lu, and C. T. Lin, "A device design of an integrated CMOS poly-silicon biosensor-on-chip to enhance performance of biomolecular analytes in serum samples," Biosens. Bioelectron., vol. 61, pp. 112-118, 2014.
[53] M. Hinnermo, A. Makaraviciute, P. Ahlberg, J. Olsson, Z. Zhang, S. L. Zhang, and Z. B. Zhang, "Protein sensing beyond the Debye length using graphene field-effect transistors," IEEE Sensors J., vol. 18, pp. 6497-6503, 2018.
[54] H. Helmholtz, "Studien über elektrische Grenzschichten," Annalen der Physik, vol. 7, pp. 837-882, 1879.
[55] M. Gouy, "Sur la constitution de la charge électrique a la surface d'un electrolyte," J. de Physicque et Appliquee, vol. 9, pp. 457-468, 1910.
[56] D. L. Chapman, Phil. Mag., vol. 25, pp. 475-475, 1913.
[57] O. Stern, Z. Elektrochem, vol. 30, pp. 508, 1924.
[58] E. Stern and R. Wagner, "Importance of the Debye screening length on nanowire field effect transistor sensors," Nano Lett., vol. 7, no. 11, pp. 3405-3409, 2007.
[59] G. S. Kulkarni and Z. Zhong, "Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor," Nano Lett., vol. 12, pp. 719–723, 2012.
[60] C. Laborde, F. Pittino, H. A. Verhoeven, S. G. Lemay, L. Selmi, M. A. Jongsma, and F. P. Widdershoven, "Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays," Nat. Nanotechnol., vol. 10, no. 9, pp. 791-795, 2015.
[61] R. Elnathan, M. Kwiat, A. Pevzner, Y. Engel, L. Burstein, A. Khatchtourints, A. Lichtenstein, R. Kantaev, and Fernando Patolsky, "Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices," Nano Lett., vol. 12, no. 10, pp. 5245-5254, 2012.
[62] N. Gao, W. Zhou, X. Jiang, G. Hong, T.-M. Fu, and C. M. Lieber, "General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors," Nano Lett., vol. 15, no. 3, pp. 2143-2148, 2015.
[63] I. Sarangadharana, A. Regmia, Y. W. Chen, C. P. Hsu, P. Chen, W. H. Chang, G. Y. Lee, J. I. Chyi, S. C. Shiesh, G. B. Lee, and Y. L. Wang, "High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN high electron mobility transistor (HEMT) biosensors," Biosens. Bioelectron., vol. 100, pp. 282-289, 2018.
[64] C. Lee, Y. W. Chen, and M. S. C. Lu, "CMOS Biosensors for the Detection of DNA Hybridization in High Ionic-Strength Solutions," IEEE Sensors J., vol. 21, no. 4, pp. 4135-4142, 2021.
[65] S. Mandeep, K. Navpreet, and C. Navpree, "The role of self-assembled monolayers in electronic devices," J. Mater. Chem. C, vol. 8, pp. 3938–3955, 2020.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *