帳號:guest(18.222.21.178)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳晨歆
作者(外文):Wu, Chen-Hsin
論文名稱(中文):在標準CMOS製程下實現單頻光之波長偵測器
論文名稱(外文):Research on Single-Frequency Light Wavelength Detector in the Standard CMOS Technology
指導教授(中文):徐永珍
指導教授(外文):Hsu, Klaus Yung-Jane
口試委員(中文):黃智方
賴宇紳
口試委員(外文):Huang, Chih-Fang
Lai, Yu-Sheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:108063541
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:50
中文關鍵詞:波長偵測器標準製程
外文關鍵詞:wavelength detectorCMOS standard process
相關次數:
  • 推薦推薦:0
  • 點閱點閱:754
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現今半導體科技產業蓬勃發展,生活中也隨處可見半導體相關的應用,以半導體為材料所設計的感光元件是相關市場上較熱門的選擇。
考量標準製程較為成熟不易失敗,並且能降低成本,因此想要藉由標準製程設計一種感光元件能識別不同波長的光偵測器,以期能在對色彩要求精準的市場上應用。本研究目的為實現一個結合光偵測器與前級訊號放大電路的opto-electronic IC (OEIC)。利用矽對於不同波長的光有不同吸收深度的特性,根據此原理設計分層架構,並將每層不同的光電流輸入轉阻放大器將訊號放大並讀取電壓值,記錄每個單頻光波長產生的電壓值後,從電壓值回推電流並換算成每個二極體的電流,先利用已知波長範圍為400nm至700nm的光,照射在元件上並記錄每一種波長的二極體電流分別為多少,以此建立背景資料庫,之後使用未知波長的光照射後即可藉由比對得知其波長數值。在量測系統部分以軟體方式與背景資料庫進行比對,期望能提供較為準確量測未知波長的方式。
The semiconductor industry is growing up these years. It is very easy to see semiconductor related application and products in our daily life. Photosensitive elements designed with semiconductor materials are the most popular topics in the relevant market.
Considering the low failure rate and low cost of CMOS standard process, we design a light wavelength detector which can detect different wavelength precisely. The purpose of this research is to realize an opto-electronic IC which combines photosensitive device and front-stage signal amplifier circuit design. According to the feature of silicon’s absorption depth, which depends on the light wavelength, we design the structure layer by layer. Each layer will generate different photo current after the detector being illuminated. Different photo current generated by different layer will be imported to each transimpedance amplifier separately. Trough transimpedance amplifier, signal will be amplified and transformed to voltage signal from current signal. After recording the voltage value of each light wavelength, we can calculate the photo diode current by formula. First, illuminate the detector by using the light of known wavelength whose range is from 400 nm to 700 nm. Second, build the database by recording the photo diode current of different light wavelength. Last, illuminate the detector by using the light of unknown wavelength and compare the photo diode current with the database to find the closest wavelength value. For measurement system, we use software to verify the database and find the wavelength value. We expect to offer a new method to measure the light of unknown wavelength.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 前言 1
1.1 研究背景與發展現況 1
1.2 研究動機 2
1.3 論文章節架構 3
第二章 感光元件原理及設計架構 4
2.1 二極體工作模式 4
2.2 光二極體原理 5
2.3 光偵測器重要參數 7
2.3.1 吸收係數(Absorption Coefficient) 7
2.3.2 量子效率(Quantum Efficiency, QE) 8
2.3.3 響應度(Responsivity) 9
2.4 感光元件架構模擬 9
2.4.1 感光元件照光面積 100μm×100μm 10
2.4.2 感光元件照光面積 200μm×200μm 14
2.4.3 感光元件照光面積 400μm×400μm 17
第三章 電路設計架構模擬分析與晶片布局 20
3.1 運算放大器簡介 20
3.2 運算放大器應用於轉阻放大器 21
3.2.1 偵測電流之電路設計 22
3.3 二級運算放大器之電路設計 23
3.3.1 二級放大器之電路圖 23
3.3.2 二級運算放大器之設計參數 24
3.3.3 運算放大器之模擬結果 26
3.4 晶片布局設計 27
3.4.1 實驗設計流程 27
3.4.2 整體晶片布局設計 29
3.4.3 感光元件布局設計 32
3.4.4 運算放大器布局設計 34
3.4.5 形成轉阻放大器之電阻布局設計 35
第四章 量測結果與討論 38
4.1 PCB載板設計 38
4.2 量測儀器簡介 41
4.3 量測系統 42
4.4 量測方式 43
4.5 量測結果 44
4.6 軟體驗證 45
第五章 結論與後續建議 46
參考文獻 47
附錄 49


圖目錄
圖2. 1 光二極體工作模式 4
圖2. 2歐姆接觸光導體示意圖[10] 5
圖2. 3光導體的本質光激發和外質光激發[10] 5
圖2. 4光二極體逆偏操作 6
圖2. 5數種半導體的光吸收係數隨波長變化關係圖[11] 8
圖2. 6不同材料光偵測器η對波長作圖[11] 8
圖2. 7感光元件剖面圖 10
圖2. 8 Silvaco軟體模擬100μm×100 𝜇𝑚元件架構圖 10
圖2. 9 Silvaco軟體模擬100 𝜇𝑚×100 𝜇𝑚元件照光後各電極電流 11
圖2. 10考慮100 𝜇𝑚寬度之各電極電流 12
圖2. 11 Silvaco軟體模擬量測電流方向示意圖 13
圖2. 12 Silvaco軟體模擬二極體光電流與波長之關係圖(照光面積100 𝜇𝑚 x 100 𝜇𝑚) 13
圖2. 13 Silvaco軟體模擬200 𝜇𝑚×200 𝜇𝑚元件架構圖 14
圖2. 14考慮200 𝜇𝑚寬度之各電極電流 15
圖2. 15 Silvaco軟體模擬200 𝜇𝑚×200 𝜇𝑚元件照光後各電極電流 15
圖2. 16 Silvaco軟體模擬二極體光電流與波長之關係圖(照光面積200 𝜇𝑚 x 200 𝜇𝑚) 16
圖2. 17 Silvaco軟體模擬400 𝜇𝑚×400 𝜇𝑚元件架構圖 17
圖2. 18 Silvaco軟體模擬400 𝜇𝑚×400 𝜇𝑚元件照光後各電極電流 18
圖2. 19考慮400 𝜇𝑚寬度之各電極電流 18
圖2. 20 Silvaco軟體模擬二極體光電流與波長之關係圖(照光面積400 𝜇𝑚 x 400 𝜇𝑚) 19

圖3. 1理想運算放大器之等效電路模型 20
圖3. 2轉阻放大器示意圖 21
圖3. 3 感光元件與放大器之連接方式示意圖 22
圖3. 4二級運算放大器架構圖 23
圖3. 5 5個corner下運算放大器之增益比較圖 26
圖3. 6實驗設計流程圖 28
圖3. 7晶片布局區塊架構簡圖 29
圖3. 8晶片布局圖 (Top View) 31
圖3. 9照光面積100 𝜇𝑚 x 100 𝜇𝑚之感光元件佈局圖 32
圖3. 10 照光面積200 𝜇𝑚 x 200 𝜇𝑚之感光元件布局圖 32
圖3. 11 照光面積400 𝜇𝑚 x 400 𝜇𝑚之感光元件布局圖 33
圖3. 12 二級運算放大器佈局圖 34
圖3. 13 感光面積100 x 100 𝜇𝑚2外接電阻位於晶片布局實際位置圖 35
圖3. 14 感光面積200 x 200 𝜇𝑚2外接電阻R1、R3位於晶片布局實際位置圖 36
圖3. 15感光面積200 x 200 𝜇𝑚2外接電阻R2位於晶片布局實際位置圖 36
圖3. 16 感光面積400 x 400 𝜇𝑚2外接電阻R1、R3位於晶片布局實際位置圖 37
圖3. 17感光面積400 x 400 𝜇𝑚2外接電阻R2位於晶片布局實際位置圖 37

圖4. 1 PCB之設計圖 38
圖4. 2 PCB板 (未銲接) 39
圖4. 3 PCB板(已銲接 晶片已打線) 39
圖4. 4 未打線之晶片 40
圖4. 5 位於PCB板上之已打線晶片 40
圖4. 6晶片量測流程圖 42
圖4. 7量測架構示意圖 43
圖4. 8照光面積400 𝜇𝑚 x 400 𝜇𝑚照射紅光之量測結果 44
圖4. 9 Python運算執行畫面 45


表目錄
表2.1感光元件各區參數表 11
表2. 2 計算代號對應表 12

表3. 1 運算放大器之電晶體參數 24
表3. 2 放大器之被動元件參數表 25
表3. 3 不同感光元件之外接電阻值對應表 25
表3. 4 5個corner下運算放大器最高增益值 26
表3. 5 實際布局時外接電阻阻值表 35

表4. 1量測儀器列表 41

[1] G. de Cesare, F. Irrera, F. Lemmi, and F. Palma, “Amorphous Si/SiC three-color detector with adjustable threshold” Applied Physics Letters, v 66, n 10, p 1178-80, 6 March 1995
[2] Erli Chen and Stephen Y. Chou, “A wavelength detector using monolithically integrated subwavelength metal-semiconductor-metal photodetectors” Proceedings of the SPIE - The International Society for Optical Engineering, v 3006, p 61-7, 1997
[3] J. Zimmer, D. Knipp, H. Stiebig and H. Wagner, "Amorphous silicon-based unipolar detector for color recognition," in IEEE Transactions on Electron Devices, vol. 46, no. 5, pp. 884-891, May 1999
[4] G. Batistell and J. Sturm, "Filter-less color sensor in standard CMOS technology," 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC), pp. 123-126, 2013
[5] A. Soares and R. Perry, "A two-color CMOS optical detector circuit," Proceedings 2007 IEEE SoutheastCon, pp. 562-565, 2007
[6] G. Langfelder, A.Longoni,F.Zaraga, “A novel colour-sensitive CMOS detector” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 610 (1), pp. 50-53.
[7] V. Gradisnik and J. D. Puksec, "Color detection using a capacitance of np silicon photodiode," 2000 10th Mediterranean Electrotechnical Conference. Information Technology and Electrotechnology for the Mediterranean Countries. Proceedings. MeleCon 2000 (Cat. No.00CH37099), pp. 795-797, 2000
[8] A. Soares and R. Perry, "A two-color CMOS optical detector circuit," Proceedings 2007 IEEE SoutheastCon, pp. 562-565, 2007
[9] A. Longoni, F. Zaraga, G. Langfelder and L. Bombelli, "The Transverse Field Detector (TFD): A Novel Color-Sensitive CMOS Device," in IEEE Electron Device Letters, vol. 29, no. 12, pp. 1306-1308
[10] S. M. Sze, “Semiconductor Device Physics and Technology”, John Wiley & Sons Inc., 3rd ed
[11] Donald A. Neamen, “Semiconductor physics and devices : basic principles”, 4th ed
[12] Albert H. Titus, Maurice C-K. Cheung and Vamsy P. Chodavarapu, “CMOS photodetector” Web: https://www.intechopen.com/chapters/17220
[13] 林祐玄, “標準CMOS製程下實現高響應度橫向光感測電晶體之研究", 國立
清華大學, 電子工程研究所, 碩士論文 中華民國一百零六年十月
[14] Operational Amplifier Basics , Electronics tutorial
Web : https://www.electronics-tutorials.ws/opamp/opamp_1.html
[15] Agarwal G. (C.U. Shah University, Gujarat, India), Dwivedi V. ”Low-Power Two-Stage OP-AMP in 16 nm” Proceedings of ICTIS 2020. Smart Innovation, Systems and Technologies (SIST 195), p 637-642, 2021
[16] Gheorghe, A.G. , Marin, M.E. “Two Stage Op-Amp Design Verification and Optimization by Symbolic Computation” WSEAS Transactions on Circuits and Systems, v 17, 180-6, 2018
[17] C. Chanapromma and J. Mahattanakul, "Improved Design Procedure for Two-Stage CMOS Op Amp Employing Current Buffer," 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2020
[18] D. Tripathy and P. Bhadra, "A High Speed Two Stage Operational Amplifier with High CMRR," 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT) , pp. 255-259, 2018
[19] V. V. Yerokhin, K. V. Murasov, A. V. Kosykh and S. A. Zavyalov,
"Transimpedance operational amplifier for high-speed systems-on-a-chip," 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT), pp. 1-4, 2018
[20] E. Bruun, "Feedback analysis of transimpedance operational amplifier circuits," in IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 40, no. 4, pp. 275-278, April 1993
[21] M. Gajare, D. K. Shedge and D. Itole, "CMOS Transimpedance Feedback Amplifier Design using Unity Gain Differential Amplifiers," 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), pp. 743-747, 2021
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *