帳號:guest(3.145.104.192)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳鈺琅
作者(外文):Chen, Yu-Lang
論文名稱(中文):基於超薄氧化鋅通道以及金屬吸光層之紅外光偵測元件
論文名稱(外文):An Infrared Photodetector Based on Ultra-thin ZnO Channel and Metallic Optical Absorption Layer
指導教授(中文):徐永珍
指導教授(外文):Hsu, Klaus Yung-Jane
口試委員(中文):賴宇紳
黃智方
口試委員(外文):Lai, Yu-Sheng
Huang, Chih-Fang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:108063535
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:77
中文關鍵詞:紅外光偵測器熱載子矽基氧化鋅
外文關鍵詞:Infrared photodetectorHot carrierSilicon-basedZnO
相關次數:
  • 推薦推薦:0
  • 點閱點閱:418
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在設計出可在室溫下操作的矽基(Silicon-based)熱載子式紅外光偵測器,同時也可作為熱載子種類之檢測平台。本論文中以超薄氧化鋅作為傳導電流的通道,以超薄摻鎵氧化鋅作為電極,並以銀作為收光材料。
矽基光偵測器因結構簡單而備受關注,但若入射光子的能量小於矽的能隙,將無法貢獻有效的光電流,因此在收光材料的選擇上需做出相對應的改變。藉由金屬照光會產生熱載子的機制,本論文選擇銀作為吸收紅外光的材料,使得矽基之光偵測器可操作於光子能量小於矽塊材能隙的1550nm波段,此波段在光通訊中扮演關鍵的角色。
相較於其他傳統的薄膜沉積技術,原子層沉積技術(Atomic layer deposition, ALD)因為在每一個製程循環僅會形成一個原子層厚度的薄膜,可以達到極為精準的厚度控制,並且因為成長過程被侷限在基板表面,就算在具有結構的表面也能得到很好的覆蓋率與均勻性。由於本論文在光學及電學特性方面對薄膜厚度的變化十分敏感,故選擇原子層沉積法及臨場摻雜技術作為本論文的製程方法。
實驗結果顯示,金屬照光後會有部分熱載子躍過蕭特基位障,被橫向電場收集,形成有效的光電流,而光電流的大小則與金屬厚度有關。在1 V的偏壓下,厚度為10 nm的銀薄膜在照射波長1550 nm、功率0.5 mW的紅外光雷射後,會有大約206.63 nA的過量電流產生,其響應度約為41.59 μA/W;在相同偏壓條件下,厚度為5 nm的銀薄膜則可產生大約228.05 nA的過量電流,其響應度約為45.61 μA/W。另外,從IR開關測試的實驗結果可以判斷金屬照光後產生的熱載子種類,根據本論文的量測結果可以推論出銀在照射1550 nm紅外光後產生的熱載子種類為電子。
The thesis proposed to design a silicon-based infrared (IR) photodetector which can operate at room temperature, and can be used to distinguish type of hot carrier. In the thesis, ultra-thin zinc oxide is used as the channel for conducting current, ultra-thin gallium-doped zinc oxide is used as the electrode, and silver is used as photo-absorbing material.
Silicon-based photodetectors have attracted much attention due to its simple structure. However, if energy of incident photons is smaller than the band gap of silicon, it will not be able to contribute to effective photocurrent. Therefore, photo-absorbing material should be revised accordingly. Due to the mechanism that metal will generate hot carriers when illuminated, silver is selected as photo-absorbing material for infrared, so that the silicon-based photodetector can operate in the wavelength of 1550 nm which plays a key role in optical communication.
Compared with other traditional thin film deposition techniques, atomic layer deposition (ALD) can achieve extremely precise thickness control because it only forms a thin film with thickness of one atomic layer in each cycle. As a result, good coverage and uniformity can be obtained even on non-uniform surface. Because the optical and electrical properties of the device are very sensitive to the variation of film thickness, atomic layer deposition and in-situ doping are selected as the fabrication techniques.
The experimental results show that after the metal is illuminated, some hot carriers will transit through the Schottky barrier and be collected by the horizontal electric field to form an effective photocurrent. Besides, the magnitude of the photocurrent is related to the thickness of the metal. Under a bias voltage of 1 V, excess current about 206.63 nA will be generated when a 10 nm silver film is irradiated with an infrared laser (wavelength: 1550 nm, power: 0.5 mW), and its responsivity is approximately 41.59 μA/W ; under the same bias condition, a 5 nm silver film can generate excess current of about 228.05 nA, and its responsivity is approximately 45.61 μA/W. Additionally, from the experimental results of the On/Off switch test, the type of hot carriers generated by metal can be determined. According to the measurement results, it can be deduced that the type of hot carriers generated by silver after being irradiated is electron.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VIII
第一章 序論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文章節架構 4
第二章 背景知識 5
2.1 蕭特基接面與歐姆接面介紹 5
2.1.1 金屬/半導體接面理論 5
2.1.2 蕭特基接面 5
2.1.3 歐姆接面 8
2.2 氧化鋅材料 9
2.2.1 氧化鋅的基本性質及應用 9
2.2.2 氧化鋅結構 11
2.2.3 摻鎵氧化鋅 12
2.3 材料的光吸收效應 13
2.3.1 金屬 13
2.3.2 半導體 15
2.4 熱載子 18
2.5 原子層沉積 21
2.5.1 原理介紹 21
2.5.2 原子層沉積製程 22
2.5.3 摻鎵氧化鋅製程 23
2.6 薄膜檢測 25
2.6.1 橢圓儀介紹 25
2.6.2 X光繞射儀介紹 26
2.7 光偵測器介紹 27
2.7.1 光導體 27
2.7.2 光二極體 27
2.7.3 光電晶體 28
2.7.4 熱載子式光偵測器 30
2.8 光偵測器重要參數 32
2.8.1 響應度 32
2.8.2 外部量子效率 32
2.8.3 暗電流 34
2.8.4 響應速度 35
2.8.5 偵測度 35
2.8.6 雜訊 36
2.8.7 材料選擇 37
第三章 元件設計與製作 38
3.1 元件設計 38
3.2 待測樣品架構 40
3.2.1 實驗架構一 (Device 1) 41
3.2.2 實驗架構二 (Device 2) 44
3.2.3 實驗架構三 (Device 3) 44
3.2.4 實驗架構四 (Device 4) 45
3.3 實驗流程 47
3.3.1 矽基板製備及清洗 47
3.3.2 原子層沉積氧化鋅及摻鎵氧化鋅薄膜 47
3.3.3 成長銀薄膜收光元件 48
3.3.4 樣品量測 49
第四章 量測結果與討論 50
4.1 量測儀器介紹 50
4.2 量測儀器架設 50
4.3 量測結果 52
4.3.1 薄膜品質檢測 52
4.3.2 歐姆測試 53
4.3.3 氧化鋅通道層傳導測試 54
4.3.4 氧化鋁絕緣效果測試 55
4.3.5 超薄氧化鋅之完全空乏測試 56
4.3.6 光響應分析 58
4.4 本論文中使用之待測樣品光響應比較 68
參考文獻 72
[1] Hall, D. J., L. Buckle, N. T. Gordon, J. Giess, J. E. Hails, J. W. Cairns, R. M. Lawrence, et al. “High-Performance Long-Wavelength HgCdTe Infrared Detectors Grownon Silicon Substrates.” Applied Physics Letters 85, no. 11 (September 13, 2004): 2113–15.
[2] Yamamoto, Hideaki Yamamoto Hideaki, Kenji Taniguchi Kenji Taniguchi, and Chihiro Hamaguchi Chihiro Hamaguchi. “High-Sensitivity SOI MOS Photodetector with Self-Amplification.” Japanese Journal of Applied Physics 35, no. 2S (February 1, 1996): 1382.
[3] S. Babar and J. H. Weaver. “Optical constants of Cu, Ag, and Au revisited.” Appl. Opt. 54, 477-481 (2015)
[4] Bauer, S., S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von M?nch. “Thin Metal Films as Absorbers for Infrared Sensors.” Sensors and Actuators A: Physical, Proceedings of Eurosensors VI, 37–38 (June 1, 1993): 497–501.
[5] Brongersma, Mark L., Naomi J. Halas, and Peter Nordlander. “Plasmon-Induced Hot Carrier Science and Technology.” Nature Nanotechnology 10, no. 1 (January 2015): 25–34.
[6] 王鴻偉, “原子層沉積臨場摻鎵氧化鋅薄膜及其於同型同質接面之研究. ” 國立清華大學, 碩士論文 (2021)
[7] 蔡淑慧, “半導體工程精選. ” 五南文化事業 (2007)
[8] Crowell, C. R., H. B. Shore, and E. E. LaBate. “Surface?State and Interface Effects in Schottky Barriers at N?Type Silicon Surfaces.” Journal of Applied Physics 36, no. 12 (December 1, 1965): 3843–50.
[9] Park, Cheolmin, Jihye Lee, Hye-Mi So, and Won Seok?Chang. “An Ultrafast Response Grating Structural ZnO Photodetector with Back-to-Back Schottky Barriers Produced by Hydrothermal Growth.” Journal of Materials Chemistry C 3, no. 12 (2015): 2737–43.
[10] Zeman, M., R. A. C. M. M. Van Swaau, M. Zuiddam, J. W. Metselaar, and R. E. I. Schropp. “Effect of Interface Roughness on Light Scattering and Optical Properties of A-Si:H Solar Cells.” MRS Online Proceedings Library (OPL) 557 (ed 1999).
[11] Chang, Yuan-Ming, Mao-Chen Liu, Pin-Hsu Kao, Chih-Ming Lin, Hsin-Yi Lee, and Jenh-Yih Juang. “Field Emission in Vertically Aligned ZnO/Si-Nanopillars with Ultra Low Turn-On Field.” ACS Applied Materials & Interfaces 4, no. 3 (March 28, 2012): 1411–16.
[12] Park, Sunghoon, Soyeon An, Hyunsung Ko, Changhyun Jin, and Chongmu Lee. “Synthesis of Nanograined ZnO Nanowires and Their Enhanced Gas Sensing Properties.” ACS Applied Materials & Interfaces 4, no. 7 (July 25, 2012): 3650–56.
[13] Lee, Chongmu, Keunbin Yim, Youngjoon Cho, and J. G. Lee. “A Comparison of Transmittance Properties between ZnO: Al Films for Transparent Conductors for Solar Cells Deposited by Sputtering of AZO and Cosputtering of AZO/ZnO.” Rare Metals 25, no. 6, Supplement 1 (October 1, 2006): 105–9.
[14] Lee, Junseok, Dan C. Sorescu, and Xingyi Deng. “Tunable Lattice Constant and Band Gap of Single- and Few-Layer ZnO.” The Journal of Physical Chemistry Letters 7, no. 7 (April 7, 2016): 1335–40.
[15] Claeyssens, Frederik, Colin L. Freeman, Neil L. Allan, Ye Sun, Michael N. R. Ashfold, and John H. Harding. “Growth of ZnO Thin Films—Experiment and Theory.” J. Mater. Chem. 15, no. 1 (2005)
[16] Niskanen, Mika, Mikael Kuisma, Oana Cramariuc, Viacheslav Golovanov, Terttu I. Hukka, Nikolai Tkachenko, and Tapio T. Rantala. “Porphyrin Adsorbed on the (101??0) Surface of the Wurtzite Structure of ZnO – Conformation Induced Effects on the Electron Transfer Characteristics.” Physical Chemistry Chemical Physics 15, no. 40 (2013): 17408.
[17] Herman W. Pollack. “Materials science and metallurgy.” (1988)
[18] Huy Q. Ta, Liang Zhao, Darius Pohl, Jinbo Pang, Barbara Trzebicka, Bernd Rellinghaus, Didier Pribat, Thomas Gemming, Zhongfan Liu, Alicja Bachmatiuk, and Mark H. Ru??mmeli. “Graphene-like ZnO: a mini review.” Crystals, vol. 6, no. 8, p. 100 (2016)
[19] E. H. S. Burhop. “The Auger Effect and Other Radiationless Transitions.” (1952)
[20] Sundararaman, Ravishankar, Prineha Narang, Adam S. Jermyn, William A. Goddard Iii, and Harry A. Atwater. “Theoretical Predictions for Hot-Carrier Generation from Surface Plasmon Decay.” Nature Communications 5, no. 1 (December 16, 2014): 5788.
[21] Fan, H. Y. “Infra-Red Absorption in Semiconductors.” Reports on Progress in Physics 19, no. 1 (January 1956): 107–55.
[22] Schroder, D.K., R.N. Thomas, and J.C. Swartz. “Free Carrier Absorption in Silicon.” IEEE Journal of Solid-State Circuits 13, no. 1 (February 1978): 180–87.
[23] Eagles, D. M. “Optical Absorption and Recombination Radiation in Semiconductors Due to Transitions between Hydrogen-like Acceptor Impurity Levels and the Conduction Band.” Journal of Physics and Chemistry of Solids 16, no. 1 (November 1, 1960): 76–83.
[24] Linic, Suljo, Umar Aslam, Calvin Boerigter, and Matthew Morabito. “Photochemical Transformations on Plasmonic Metal Nanoparticles.” Nature Materials 14, no. 6 (June 2015): 567–76.
[25] Clavero, C?sar. “Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices.” Nature Photonics 8, no. 2 (February 2014): 95–103.
[26] Tuomo Suntola and Jorma Antson. “Method for producing compound thin films.” United States Patent no. 4058430, DOI (1977)
[27] 曾柏憲, “利用原子層沉積法成長出高品質摻鋁氧化鋅薄膜於矽光學元件之應用. ” 國立新竹教育大學, 碩士論文 (2016)
[28] 顏伯翰, “原子層沉積摻鋁氧化鋅之成長與電致發光機制之探討. ” 國立清華大學, 碩士論文 (2021)
[29] Li, Xiaoqing, Hongke Zhang, Xubing Lu, Zhiqiang Fang, Rihui Yao, Yiping Wang, Hong Tao, Hongfu Liang, Honglong Ning, and Junbiao Peng. “Effect of Oxygen Pressure on GZO Film as Active Layer of the TFT Fabricated at Room Temperature.” Superlattices and Microstructures 137 (January 1, 2020): 106317.
[30] Schulz, Uwe, Andrzej Nowotnik, Stefan Kunkel, and Georg Reiter. “Effect of Processing and Interface on the Durability of Single and Bilayer 7YSZ / Gadolinium Zirconate EB-PVD Thermal Barrier Coatings.” Surface and Coatings Technology 381 (January 15, 2020): 125107.
[31] Ponja, Sapna D., Sanjayan Sathasivam, Ivan P. Parkin, and Claire J. Carmalt. “Highly Conductive and Transparent Gallium Doped Zinc Oxide Thin Films via Chemical Vapor Deposition.” Scientific Reports 10, no. 1 (January 20, 2020): 638.
[32] Azzam, R. M. A., N. M. Bashara, and Stanley S. Ballard. “Ellipsometry and Polarized Light.” Physics Today 31 (January 1, 1978): 72.
[33] Chen, C. Y., B. L. Kasper, and H. M. Cox. “High?sensitivity Ga_0.47 In_0.53 As Photoconductive Detectors Prepared by Vapor Phase Epitaxy.” Applied Physics Letters 44, no. 12 (June 15, 1984): 1142–44.
[34] Tyagi, Manisha, Monika Tomar, and Vinay Gupta. “P-N Junction of NiO Thin Film for Photonic Devices.” IEEE Electron Device Letters 34, no. 1 (January 2013): 81–83.
[35] Verdonckt-Vandebroek, S., S.S. Wong, J.C.S. Woo, and P.K. Ko. “High-Gain Lateral Bipolar Action in a MOSFET Structure.” IEEE Transactions on Electron Devices 38, no. 11 (November 1991)
[36] Li, Wei, and Jason G. Valentine. “Harvesting the Loss: Surface Plasmon-Based Hot Electron Photodetection.” Nanophotonics 6, no. 1 (January 6, 2017): 177–91.
[37] Peters, D.W. “An Infrared Detector Utilizing Internal Photoemission.” Proceedings of the IEEE 55, no. 5 (May 1967): 704–5.
[38] Knight, Mark W., Heidar Sobhani, Peter Nordlander, and Naomi J. Halas. “Photodetection with Active Optical Antennas.” Science 332, no. 6030 (May 6, 2011): 702–4.
[39] 張嘉原, “銦/矽蕭特基紅外光感測器之研究. ” 國立清華大學, 碩士論文 (2021)
[40] S. M. Sze, "Semiconductor devices: physics and technology. John Wiley & Sons Inc. (2008)
[41] Blandre, E., D. Jalas, A. Yu. Petrov, and M. Eich. “Limit of Efficiency of Generation of Hot Electrons in Metals and Their Injection inside a Semiconductor Using a Semiclassical Approach.” ACS Photonics 5, no. 9 (September 19, 2018): 3613–20.
[42] Chawla, J. S., and D. Gall. “Epitaxial Ag(001) Grown on MgO(001) and TiN(001): Twinning, Surface Morphology, and Electron Surface Scattering.” Journal of Applied Physics 111, no. 4 (February 15, 2012): 043708.
[43] Mahan, G. D., and D. T. F. Marple. “Infrared Absorption of Thin Metal Films: Pt on Si.” Applied Physics Letters 42, no. 3 (February 1, 1983): 219–21.
[44] Lei, Jie, Ming-Chun Xu, and Shu-Jun Hu. “Transition Metal Decorated Graphene-like Zinc Oxide Ultra-thin: A First-Principles Investigation.” Journal of Applied Physics 118, no. 10 (September 14, 2015): 104302.
[45] Lanyon, H.P.D., and R.A. Tuft. “Bandgap Narrowing in Moderately to Heavily Doped Silicon.” IEEE Transactions on Electron Devices 26, no. 7 (July 1979): 1014–18.
[46] Mitchell, E. W. J., and J. W. Mitchell. “The Work Functions of Copper, Silver and Aluminium.” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 210, no. 1100 (1951): 70–84.
[47] Filatova, Elena O., and Aleksei S. Konashuk. “Interpretation of the Changing the Band Gap of Al2O3 Depending on Its Crystalline Form: Connection with Different Local Symmetries.” The Journal of Physical Chemistry C 119, no. 35 (September 3, 2015): 20755–61.
[48] Lin, T. K., S. J. Chang, Y. K. Su, B. R. Huang, M. Fujita, and Y. Horikoshi. “ZnO MSM Photodetectors with Ru Contact Electrodes.” Journal of Crystal Growth 281, no. 2 (2005)
[49] Johnson, P. B., and R. W. Christy. “Optical Constants of the Noble Metals.” Physical Review B 6, no. 12 (1972): 4370–79.
(此全文20270307後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *