帳號:guest(18.221.255.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林正鴻
作者(外文):Lin, Chang-Hung
論文名稱(中文):應用於高離子濃度下DNA感測之0.18 μm CMOS電容式感測器開發
論文名稱(外文):Development of 0.18 μm CMOS capacitive sensors for DNA detection under high ionic strength
指導教授(中文):盧向成
指導教授(外文):Lu, Shiang-Cheng
口試委員(中文):劉承賢
林致廷
口試委員(外文):Liu, Cheng-Hsien
Lin, Chih-Ting
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:108063520
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:80
中文關鍵詞:DNA感測電容式感測晶片CMOS bio-MEMS電雙層效應高頻
外文關鍵詞:DNA measurementcapacitive sensorsCMOS bio-MEMSDebye length effecthigh frequency
相關次數:
  • 推薦推薦:0
  • 點閱點閱:465
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘要
在這個半導體產業蓬勃發展的時代,晶片設計被應用在各種層面,更陸續出現許多跨領域的結合與應用。其中,將電路設計和生醫感測結合便是一個熱門的應用,藉由將CMOS電路製程和微機電系統整合在同一片晶片上,我們可以製作出具有良好感測度的生醫感測晶片。如此一來我們可以應用到先進CMOS製程的優點,將感測單位結合電路設計做成陣列。
這些生醫感測晶片可以藉由特定的修飾步驟,用來感測微量的生物分子,比如蛋白質或DNA等。但是這些生物分子需在具有鹽分的溶液中才能保持活性,進而進行感測,而高離子濃度的檢體溶液會因離子遮蔽而產生電雙層,造成Debye Length效應,因此如何解決Debye Length效應也是此議題中需面對的問題。
本論文提出在高頻中以電容式感測器來檢測DNA分子。晶片是使用TSMC 0.18 M 1P6M CMOS製程,感測器是使用指叉式電極做為感測電容,搭配不同操作頻率的環形震盪器做為感測電路,並整合電路設計做出88的陣列進行感測。我們的設計操作於高頻,試圖藉以解決高離子濃度溶液中的Debye Length效應,以提高感測器的感測度。最後我們再利用整合的讀取電路將訊號輸出並進行分析。

關鍵字: DNA感測、電容式感測晶片、CMOS bio-MEMS、電雙層效應、高頻。
Abstract
In this era of vigorous development of the semiconductor industry, chip designs are applied at various levels, and many cross-disciplinary integration and applications have emerged one after another. Among them, the integration of readout circuits and biomedical sensors becomes popular. By integrating the CMOS circuit process and MEMS on the same chip, we can produce biomedical sensor chips with good sensitivity. In this way, we can take advantages of the advanced CMOS process to conveniently implement an integrated sensor array.
These biomedical sensor chips can be used to sense tiny amounts of biomolecules, such as proteins or DNA, through specific modification and binding steps. However, these biomolecules need to be active in a salty solution for sensing, and the sample solution with high ion concentration produces a strong charge screening effect due to the small Debye length of the electrical double layer on sensor surface. Therefore, this work aims to reduce the Debye screening effect when detecting biomolecules under high ionic strength.
To reduce charge screening, this study proposes the use of capacitive sensors to detect DNA molecules at high frequencies. The chips are fabricated using TSMC 0.18 M CMOS 1P6M process. The sensors consist of the interdigitated electrodes as the sensing capacitor and the ring oscillators operating at different frequencies as the readout circuits. An 88 sensor array has been developed. The high-frequency modulation is effective to reduce charge screening so as to improve the sensitivity of the sensor.
Keywords: DNA measurement, capacitive sensors, CMOS bio-MEMS, Debye length effect, high frequency.
摘要...I
Abstract...II
致謝...III
目錄...IV
圖目錄...VI
表目錄...IX
第一章 緒論...1
1-1前言...1
1-2文獻回顧...3
1-3研究動機...6
第二章 設計與模擬...9
2-1 指叉式電容設計...9
2-1-1 指叉電極感測機制...9
2-1-2高頻下的溶液感測模型...10
2-1-3指叉式電容設計與模擬...12
2-2 電路架構及模擬...15
2-2-1 整體電路架構...15
2-2-2 電路模擬結果...24
第三章 生醫實驗介紹...31
3-1 帶測生物分子介紹 – DNA...31
3-2 DNA表面修飾鍵結流程...32
第四章 量測結果與分析...36
4-1 量測設備介紹...36
4-2 晶片架構和PCB板封裝...39
4-3量測結果...41
4-3-1 PBS緩衝液中的穩定度量測...41
4-3-2 pH值緩衝液中的訊號量測...43
4-3-3不同濃度PBS緩衝液中的訊號量測...51
4-3-4 DNA分子感測實驗的訊號量測...55
第五章 結論與未來工作...68
參考文獻...69
附錄...75

參考文獻
[1]Y. Huang, C. Huang, T. Lin C. Lin, L. Chen, P. Hsiao, B. Wu, H. Hsueh, B. Kuo, H. Liao, Y. Juang, C. Wang and S. Lu, "A CMOS cantilever-based label-free DNA SoC with improved sensitivity for hepatitis B virus detection." IEEE transactions on biomedical circuits and systems vol.7, no.6, pp. 820-831, 2013.
[2]J. You, K. Jang, S. Lee, D. Bang, S. Haam, C. Choi, J. Park, and S. Na, "Label-free detection of zinc oxide nanowire using a graphene wrapping method." Biosensors and Bioelectronics, vol.68, pp. 481-486, 2015.
[3]P. Bataillard, F. Gardies, N. Jaff and N. Martelet, "Direct detection of immunospecies by capacitance measurements." Analytical Chemistry vol.60, no.21 pp. 2374-2379, 1988.
[4]A. L. Newman, K. W. Hunter, and W. D. Stanbro. "The capacitive affinity sensor: a new biosensor." Proceedings of the Second International Meeting on Chemical Sensors, Bordeaux, France. 1986.
[5]R. M. Matanguihan, K. B. Konstantinov, and T. Yoshida. "Dielectric measurement to monitor the growth and the physiological states of biological cells." Bioprocess Engineering vol.11, no.6, pp. 213-222, 1994.
[6]D. C. Cullen, R. S. Sethi, and C. R. Lowe. "Multi-analyte miniature conductance biosensor." Analytica Chimica Acta vol.231, pp. 33-40, 1990.
[7]A. A. Shul’ga, A.P. Soldakin, "Thin-film conductometric biosensors for glucose and urea determination." Biosensors and Bioelectronics vol.9, no.3, pp. 217-223, 1994.
[8]J. Li, M. Xue, Z. Lu, Z. Zhang, C. Feng and M. Chan, "A high-density conduction-based micro-DNA identification array fabricated with a CMOS compatible process." IEEE Transactions on Electron Devices vol.50, no.10, pp. 2165-2170, 2003.
[9]A. Benvidi, N. Rajabzadeh, H. Zahedi, M. Mazloum-Ardakani, M. M. Heidari, L. Hosseinzadeh, "Simple and label-free detection of DNA hybridization on a modified graphene nanosheets electrode." Talanta vol.137, pp. 80-86, 2015.
[10]X. Wang, F. Nan, J. Zhao, T. Yang, T. Ge, K. Jiao, "A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity." Biosensors and Bioelectronics vol.64, pp. 386-391, 2015.
[11]R. Pei, Z. Chang, E. Wang and X. Yang, "Amplification of antigen–antibody interactions based on biotin labeled protein–streptavidin network complex using impedance spectroscopy." Biosensors and Bioelectronics vol.16, no.6, pp. 355-361, 2001.
[12]Katz, Eugenii, and Itamar Willner. "Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA‐sensors, and enzyme biosensors." Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis vol.15, no.11, pp. 913-947, 2003.
[13]Daniels, S. Jonathan, and Nader Pourmand. "Label‐free impedance biosensors: Opportunities and challenges." Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis vol.19, no.12 pp. 1239-1257, 2007.
[14]C. M. Chen, and Michael S-C. Lu. "A CMOS capacitive biosensor array for highly sensitive detection of pathogenic avian influenza DNA." 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2017.
[15]C. Stagni, C.Guiducci, L. Benini, B. Ricco, S. Carrara, B. Samori, C Paulus, M. Schienle, M. Augustyniak, and R. Thewes, "CMOS DNA sensor array with integrated A/D conversion based on label-free capacitance measurement." IEEE Journal of Solid-State Circuits vol.41, no.12, pp. 2956-2964, 2006.
[16]C. Stagni, C.Guiducci, L. Benini, B. Ricco, S. Carrara, C Paulus, M. Schienle , and R. Thewes, "A fully electronic label-free DNA sensor chip." IEEE Sensors Journal vol.7 pp. 577-585, 2007.
[17]L. Moreno-Hagelsieb, Luis, B. Foultier, G. Laurent, R. Pampin, J. Remacle, J. P. Raskin, and D. Flandre, "Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2O3 capacitors." Biosensors and bioelectronics vol22, no.9-10, pp. 2199-2207, 2007.
[18]J.Z. Chena, A.A. Darhuberb, S.M. Troian, S. Wagner, "Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation." Lab on a Chip vol.4, no.5 pp. 473-480, 2004.
[19]A. Balasubramanian, B. Bhuva, R. Mernaugh, F.R. Haselton, "Si-based sensor for virus detection." IEEE Sensors Journal vol.5, no.3, pp. 340-344, 2005.
[20]S.B. Prakash, P. Abshire, "A CMOS capacitance sensor that monitors cell viability." SENSORS, 2005 IEEE. IEEE, 2005.
[21]M. I. Prodromidis, "Impedimetric biosensors and immunosensors." Pakistan Journal of Analytical & Environmental Chemistry vol.8, no.2, pp. 3, 2007.
[22]E. Katz, I. Willner, and J. Wang, "Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles." Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis vol.16, no.1‐2 pp. 19-44, 2004.
[23]S. M. Radke, and C. A. Evangelyn, "Design and fabrication of a microimpedance biosensor for bacterial detection." IEEE sensors journal vol.4, no.4, pp. 434-440, 2004.
[24]E. A. Vasconcelos, N. G. Peres, C. O. Pereira, V. L. da Silva, E. F. da Silva Jr., and F. Dutra, "Potential of a simplified measurement scheme and device structure for a low cost label-free point-of-care capacitive biosensor." Biosensors and Bioelectronics vol.25, no.4, pp. 870-876, 2009.
[25]N. Gao, W. Zhou, X. Jiang, "General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors." Nano letters vol.15, no.3, pp. 2143-2148, 2015.
[26]A. Numnuam, P. Kanatharana, B. Mattiasson, P. Asawatreratanakul, B. Wogkittisuksa, C. Limsakul, and P. Thavarungkul, "Capacitive biosensor for quantification of trace amounts of DNA." Biosensors and Bioelectronics vol.24, no.8, pp. 2559-2565, 2009.
[27]S. Carrara, V. Bhalla, C. Stagnia, L. Benini, A. Ferretti, F. Vallea, A. Gallottac, B. Riccob, and B. Samor, "Label-free cancer markers detection by capacitance biochip." Sensors and Actuators B: Chemical vol.136, no.1, pp. 163-172, 2009.
[28]L. Wang, M. Veselinovic, "A sensitive DNA capacitive biosensor using interdigitated electrodes." Biosensors and Bioelectronics vol.87, pp. 646-653, 2017.
[29]H. Helmholtz, "Studien über elektrische Grenzschichten", Annalen der Physik, vol. 7, pp. 837-882, 1879.
[30]M. Gouy, "Sur la constitution de la charge électrique a la surface d'un électrolyte", J. de Physicque et Appliquee, vol. 9, pp. 457-468, 1910.
[31]D. L. Chapman,“A contribution to the theory of electrocapillarity,” Phil. Mag., vol. 25, pp. 475-475, 1913.
[32]N. Gao, W. Zhou, X. Jiang, "General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors", Nano Lett., vol. 15, no. 3, pp. 2143-2148, 2015.
[33]N. Gao, W. Zhou, X. Jiang, G. Hong, T.-M. Fu and C. M. Lieber, "General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors", Nano Lett., vol. 15, no. 3, pp. 2143-2148, 2015.
[34]R. Elnathan, M. Kwiat, A. Pevzner, Y. Engel, L. Burstein, A. Khatchtourints, A. Lichtenstein, R. Kantaev, and F. Patolsky, "Biorecognition layer engineering: Overcoming screening limitations of nanowire-based FET devices", Nano Lett., vol. 12, no. 10, pp. 5245-5254, 2012.
[35]G. S. Kulkarni, Z. Zhong, “Detection beyond the debye screening length in a high frequency nanoelectronic biosensor,” Nano Lett. vol.12, pp. 719-723, 2012.
[36]C. Laborde, F. Pittino, H. A. Verhoeven, S. G. Lemay, L. Selmi, M. A. Jongsma, and F. P. Widdershoven, "Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays", Nature Nanotechnol., vol.10, no.9, pp. 791-795, 2015.
[37]F. Widdershoven, A. Cossettni, “A CMOS pixelated nanocapacitor biosensor platform for high-frequency impedance spectroscopy and image,” IEEE transactions on biomedical circuit and systems, vol.12, no.6, pp. 1369-1382, 2018.
[38]A. Quershi, Y. Gurbuz, “A novel interdigitated capacitor based biosensor for detection of cardiovascular risk marker,” Biosensors and Bioelectronics, vol.25, pp. 877-882, 2009.
[39]H. J. Panya, H. T. Kim, “Towards an automated MEMS-based characterization of benign and cancerous breast tissue using bioimpedance measurements,” Sensors and Actuators B: Chemical, vol.199, pp. 259-268, 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *