|
[1] W. Shockley, “The path to the conception of the junction transistor,” IEEE Transactions on Electron Devices, vol. 23, no. 7, pp. 597–620, 1976. [2] Steve Jurvetson, “122 years of moore’s law.” https://flic.kr/p/2mihXZU, 2021. [3] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56–58,Nov. 1991. [4] R. E. Smalley, “Discovering the fullerenes,” Reviews of Modern Physics, vol. 69,no. 3, p. 723, 1997. [5] Y.H. Wang, K.J. Huang, and X. Wu, “Recent advances in transitionmetal dichalcogenides based electrochemical biosensors: A review.,” Biosensors bioelectronics,vol. 97, pp. 305–316, 2017. [6] M. Chhowalla, H. S. Shin, G. Eda, L.J. Li, K. P. Loh, and H. Zhang, “The chemistry of twodimensional layered transition metal dichalcogenide nanosheets,” vol. 5,pp. 263–275, Mar. 2013. [7] A. Kuc and T. Heine, “The electronic structure calculations of twodimensional transitionmetal dichalcogenides in the presence of external electric and magnetic fields,” vol. 44, no. 9, pp. 2603–2614, 2015. [8] J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” vol. 18,pp. 193–335, May 1969. [9] A. Armano and S. Agnello, “Twodimensional carbon: A review of synthesis methods, and electronic, optical, and vibrational properties of singlelayer graphene,”vol. 5, p. 67, Nov. 2019. [10] A. K. Geim and K. S. Novoselov, “The rise of graphene,” vol. 6, pp. 183–191, Mar. 2007. [11] Wikipedia contributors, “Graphene — Wikipedia, the free encyclopedia.” https://en.wikipedia.org/w/index.php?title=Graphene&oldid=1050194547, 2021. [Online; accessed 21October2021]. [12] L. Tang, J. Tan, H. Nong, B. Liu, and H.M. Cheng, “Chemical vapor deposition growth of twodimensional compound materials: Controllability, material quality, and growth mechanism,” vol. 2, pp. 36–47, Dec. 2020. [13] J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon Vlsi Technology. Prentice Hall, 2012. [14] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Y. Hwang, Y. Cui, and Z. Liu, “Controlled growth of highquality monolayer WS2 layers on sapphire and imaging its grain boundary,” vol. 7, pp. 8963–8971, Sept. 2013. [15] C.C. Lu, Y.C. Lin, Z. Liu, C.H. Yeh, K. Suenaga, and P.W. Chiu, “Twisting bilayer graphene superlattices,” vol. 7, pp. 2587–2594, Mar. 2013. [16] S. Amini, J. Garay, G. Liu, A. A. Balandin, and R. Abbaschian, “Growth of large area graphene films from metalcarbon melts,” vol. 108, p. 094321, Nov. 2010. [17] Wikipedia contributors, “Raman spectroscopy — Wikipedia, the free encyclopedia.”https://en.wikipedia.org/w/index.php?title=Raman_spectroscopy&oldid=1050606578, 2021. [Online; accessed 11November2021]. [18] J. L. Verble and T. J. Wieting, “Lattice mode degeneracy in MoS2and other layer compounds,” vol. 25, pp. 362–365, Aug. 1970. [19] G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, and G. Dresselhaus, “Raman and resonance raman investigation ofMoS2nanoparticles,” vol. 60, pp. 2883–2892, July 1999. [20] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. M. de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and raman response of monolayer MoS_2, MoSe_2, and WSe_2,” vol. 21, p. 4908, Feb. 2013. [21] A. Berkdemir, H. R. Gutiérrez, A. R. BotelloMéndez, N. PereaLópez, A. L. Elías, C.I. Chia, B. Wang, V. H. Crespi, F. LópezUrías, J.C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using raman spec troscopy,” vol. 3, Apr. 2013. [22] J. H. Simmons and K. S. Potter, Optical materials. Academic Press, 2000. [23] W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” vol. 7,pp. 791–797, Dec. 2012. [24] S. Bertolazzi, S. Bonacchi, G. Nan, A. Pershin, D. Beljonne, and P. Samorì, “Engineering chemically active defects in monolayer MoS2transistors via ionbeam irradiation and their healing via vapor deposition of alkanethiols,” vol. 29, p. 1606760, Mar. 2017. [25] Z. Qin, L. Loh, J. Wang, X. Xu, Q. Zhang, B. Haas, C. Alvarez, H. Okuno, J. Z. Yong, T. Schultz, et al., “Growth of nbdoped monolayer ws2 by liquidphase precursor mixing,” ACS nano, vol. 13, no. 9, pp. 10768–10775, 2019. [26] J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, L. Shi, et al., “Janus monolayer transitionmetal dichalcogenides,” ACS nano, vol. 11, no. 8, pp. 8192–8198, 2017. [27] H. Yuan, M. S. Bahramy, K. Morimoto, S. Wu, K. Nomura, B.J. Yang, H. Shimotani, R. Suzuki, M. Toh, C. Kloc, et al., “Zeemantype spin splitting controlled by an electric field,” Nature Physics, vol. 9, no. 9, pp. 563–569, 2013. [28] D. B. Trivedi, G. Turgut, Y. Qin, M. Y. Sayyad, D. Hajra, M. Howell, L. Liu, S. Yang, N. H. Patoary, H. Li, et al., “Roomtemperature synthesis of 2d janus crystals and their heterostructures,” Advanced Materials, vol. 32, no. 50, p. 2006320, 2020. [29] C. Ernandes, L. Khalil, H. Almabrouk, D. Pierucci, B. Zheng, J. Avila, P. Dudin, J. Chaste, F. Oehler, M. Pala, et al., “Indirect to direct band gap crossover in two dimensional ws 2 (1 x) se 2x alloys,” npj 2D Materials and Applications, vol. 5, no. 1, pp. 1–7, 2021. [30] J. Wang, Q. Yao, C.W. Huang, X. Zou, L. Liao, S. Chen, Z. Fan, K. Zhang, W. Wu, X. Xiao, et al., “High mobility mos2 transistor with low schottky barrier contact by using atomic thick hbn as a tunneling layer,” Advanced materials, vol. 28, no. 37, pp. 8302–8308, 2016. [31] G.S. Kim, S.H. Kim, J. Park, K. H. Han, J. Kim, and H.Y. Yu, “Schottky barrier height engineering for electrical contacts of multilayered mos2 transistors with reduction of metalinduced gap states,” ACS nano, vol. 12, no. 6, pp. 6292–6300, 2018. [32] H. Tang, B. Shi, Y. Pan, J. Li, X. Zhang, J. Yan, S. Liu, J. Yang, L. Xu, J. Yang, et al., “Schottky contact in monolayer ws2 fieldeffect transistors,” Advanced Theory and Simulations, vol. 2, no. 5, p. 1900001, 2019. |