帳號:guest(18.116.37.31)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭博鈞
作者(外文):Hsiao, Bo-Jiun
論文名稱(中文):過渡金屬硫屬化物原子置換摻雜與金半接觸特性分析
論文名稱(外文):Substitution Doping and Metal/Semiconductor Contact Improvement for TMDC
指導教授(中文):邱博文
指導教授(外文):Chiu, Po-Wen
口試委員(中文):林彥甫
李奎毅
口試委員(外文):Lin, Yen-Fu
LEE, Kuei-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:108063509
出版年(民國):110
畢業學年度:110
語文別:中文
論文頁數:74
中文關鍵詞:二維半導體過渡金屬硫屬化物原子置換摻雜金半特性
外文關鍵詞:2D materialTMDCsubstitution dopingcontact
相關次數:
  • 推薦推薦:0
  • 點閱點閱:83
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
二維材料在過去二十年以來發展迅速,非常有潛力成為下個世代的主流半導體材料,但二維半導體受限於其原生的材料特性,相比於三維矽半導體,二維材料難以進行摻雜且存在金半接觸的費米釘扎等問題,導致其電晶體效能被嚴重的限制,在本論文中,分別提出了兩個方法改善了上述的問題。針對材料的摻雜,我們成功的利用原子擴散的方式將過渡金屬原子與硫族原子置換摻雜;而金半接觸的改良,我們利用氫電漿處理的方式,使接觸區域的二維半導體金屬化,強化過渡金屬與電極金屬的耦合,提升了載子的注入效率,成功地讓金半接面由蕭基接觸特性轉為歐姆接觸特性,等效降低了接觸電阻,提升電晶體的效能。
Over the past decade, the two-dimensional (2D) layered materials have surged and been expected to become the next generation semiconductor materials. But there exist two main problems for 2D materials: One is the doping issue, compared with silicon semiconductor, we can not use ion implantation due to its atomic structure properties. Here we propose a method for site-selective doping to achieve substitutional doping in 2D material. The other is the metal/semiconductor contact issue, we use hydrogen plasma treatment to make the contact area metallization, increases the coupling between transition metal and electrode metal, which can improve the carrier injection efficiency and successfully boost the performance of 2D FET.
第1 章 緒論..... 1
1.1 近代半導體沿革..... 1
1.2 傳統半導體的發展限制..... 3
1.3 二維半導體材料的發展..... 6
1.4 論文架構..... 9
第2 章 二維材料介紹..... 10
2.1 過渡金屬二硫族化合物介紹..... 10
2.1.1 晶體結構..... 10
2.1.2 電子能帶.....13
2.2 石墨烯介紹..... 16
2.2.1 晶體結構..... 16
第3 章 材料製備與檢測..... 18
3.1 化學氣相沉積法..... 18
3.2 二硒化鎢..... 20
3.3 二硫化鎢..... 23
3.4 石墨烯..... 26
3.5 拉曼光譜儀檢測..... 29
3.6 光致螢光光譜儀檢測..... 36
第4 章 原子置換與分析..... 39
4.1 過渡金屬次原子層之置換...... 39
4.2 拉曼光譜儀與光致螢光光譜儀分析..... 49
第5 章 鎢系二維半導體之Janus 結構與分析..... 55
5.1 實驗設備..... 56
5.2 實驗流程與參數...... 57
5.3 拉曼光譜儀與光致螢光光譜儀分析...... 57
5.4 鎢系二維半導體之金半接觸特性..... 62
第6 章 結論與未來展望..... 71
參考文獻..... 72
[1] W. Shockley, “The path to the conception of the junction transistor,” IEEE Transac­tions on Electron Devices, vol. 23, no. 7, pp. 597–620, 1976.
[2] Steve Jurvetson, “122 years of moore’s law.” https://flic.kr/p/2mihXZU, 2021.
[3] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56–58,Nov. 1991.
[4] R. E. Smalley, “Discovering the fullerenes,” Reviews of Modern Physics, vol. 69,no. 3, p. 723, 1997.
[5] Y.­H. Wang, K.­J. Huang, and X. Wu, “Recent advances in transition­metal dichalco­genides based electrochemical biosensors: A review.,” Biosensors bioelectronics,vol. 97, pp. 305–316, 2017.
[6] M. Chhowalla, H. S. Shin, G. Eda, L.­J. Li, K. P. Loh, and H. Zhang, “The chem­istry of two­dimensional layered transition metal dichalcogenide nanosheets,” vol. 5,pp. 263–275, Mar. 2013.
[7] A. Kuc and T. Heine, “The electronic structure calculations of two­dimensional transition­metal dichalcogenides in the presence of external electric and magnetic fields,” vol. 44, no. 9, pp. 2603–2614, 2015.
[8] J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and in­terpretation of the observed optical, electrical and structural properties,” vol. 18,pp. 193–335, May 1969.
[9] A. Armano and S. Agnello, “Two­dimensional carbon: A review of synthesis meth­ods, and electronic, optical, and vibrational properties of single­layer graphene,”vol. 5, p. 67, Nov. 2019.
[10] A. K. Geim and K. S. Novoselov, “The rise of graphene,” vol. 6, pp. 183–191, Mar. 2007.
[11] Wikipedia contributors, “Graphene — Wikipedia, the free encyclopedia.” https://en.wikipedia.org/w/index.php?title=Graphene&oldid=1050194547, 2021. [On­line; accessed 21­October­2021].
[12] L. Tang, J. Tan, H. Nong, B. Liu, and H.­M. Cheng, “Chemical vapor deposition growth of two­dimensional compound materials: Controllability, material quality, and growth mechanism,” vol. 2, pp. 36–47, Dec. 2020.
[13] J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon Vlsi Technology. Prentice Hall, 2012.
[14] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Y. Hwang, Y. Cui, and Z. Liu, “Controlled growth of high­quality mono­layer WS2 layers on sapphire and imaging its grain boundary,” vol. 7, pp. 8963–8971, Sept. 2013.
[15] C.­C. Lu, Y.­C. Lin, Z. Liu, C.­H. Yeh, K. Suenaga, and P.­W. Chiu, “Twisting bilayer graphene superlattices,” vol. 7, pp. 2587–2594, Mar. 2013.
[16] S. Amini, J. Garay, G. Liu, A. A. Balandin, and R. Abbaschian, “Growth of large­ area graphene films from metal­carbon melts,” vol. 108, p. 094321, Nov. 2010.
[17] Wikipedia contributors, “Raman spectroscopy — Wikipedia, the free encyclopedia.”https://en.wikipedia.org/w/index.php?title=Raman_spectroscopy&oldid=1050606578, 2021. [Online; accessed 11­November­2021].
[18] J. L. Verble and T. J. Wieting, “Lattice mode degeneracy in MoS2and other layer compounds,” vol. 25, pp. 362–365, Aug. 1970.
[19] G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, and G. Dresselhaus, “Ra­man and resonance raman investigation ofMoS2nanoparticles,” vol. 60, pp. 2883–2892, July 1999.
[20] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. M. de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and raman response of monolayer MoS_2, MoSe_2,
and WSe_2,” vol. 21, p. 4908, Feb. 2013.
[21] A. Berkdemir, H. R. Gutiérrez, A. R. Botello­Méndez, N. Perea­López, A. L. Elías, C.­I. Chia, B. Wang, V. H. Crespi, F. López­Urías, J.­C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using raman spec­
troscopy,” vol. 3, Apr. 2013.
[22] J. H. Simmons and K. S. Potter, Optical materials. Academic Press, 2000.
[23] W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.­H. Tan, and G. Eda, “Evo­lution of electronic structure in atomically thin sheets of WS2 and WSe2,” vol. 7,pp. 791–797, Dec. 2012.
[24] S. Bertolazzi, S. Bonacchi, G. Nan, A. Pershin, D. Beljonne, and P. Samorì, “Engi­neering chemically active defects in monolayer MoS2transistors via ion­beam irra­diation and their healing via vapor deposition of alkanethiols,” vol. 29, p. 1606760, Mar. 2017.
[25] Z. Qin, L. Loh, J. Wang, X. Xu, Q. Zhang, B. Haas, C. Alvarez, H. Okuno, J. Z. Yong, T. Schultz, et al., “Growth of nb­doped monolayer ws2 by liquid­phase precursor mixing,” ACS nano, vol. 13, no. 9, pp. 10768–10775, 2019.
[26] J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, L. Shi, et al., “Janus monolayer transition­metal dichalcogenides,” ACS nano, vol. 11, no. 8, pp. 8192–8198, 2017.
[27] H. Yuan, M. S. Bahramy, K. Morimoto, S. Wu, K. Nomura, B.­J. Yang, H. Shimotani, R. Suzuki, M. Toh, C. Kloc, et al., “Zeeman­type spin splitting controlled by an electric field,” Nature Physics, vol. 9, no. 9, pp. 563–569, 2013.
[28] D. B. Trivedi, G. Turgut, Y. Qin, M. Y. Sayyad, D. Hajra, M. Howell, L. Liu, S. Yang, N. H. Patoary, H. Li, et al., “Room­temperature synthesis of 2d janus crystals and their heterostructures,” Advanced Materials, vol. 32, no. 50, p. 2006320, 2020.
[29] C. Ernandes, L. Khalil, H. Almabrouk, D. Pierucci, B. Zheng, J. Avila, P. Dudin, J. Chaste, F. Oehler, M. Pala, et al., “Indirect to direct band gap crossover in two­ dimensional ws 2 (1­ x) se 2x alloys,” npj 2D Materials and Applications, vol. 5, no. 1, pp. 1–7, 2021.
[30] J. Wang, Q. Yao, C.­W. Huang, X. Zou, L. Liao, S. Chen, Z. Fan, K. Zhang, W. Wu, X. Xiao, et al., “High mobility mos2 transistor with low schottky barrier contact by using atomic thick h­bn as a tunneling layer,” Advanced materials, vol. 28, no. 37,
pp. 8302–8308, 2016.
[31] G.­S. Kim, S.­H. Kim, J. Park, K. H. Han, J. Kim, and H.­Y. Yu, “Schottky bar­rier height engineering for electrical contacts of multilayered mos2 transistors with reduction of metal­induced gap states,” ACS nano, vol. 12, no. 6, pp. 6292–6300, 2018.
[32] H. Tang, B. Shi, Y. Pan, J. Li, X. Zhang, J. Yan, S. Liu, J. Yang, L. Xu, J. Yang, et al., “Schottky contact in monolayer ws2 field­effect transistors,” Advanced Theory and Simulations, vol. 2, no. 5, p. 1900001, 2019.
(此全文20241220後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *