|
[1] B. B. Hu and M. C. Nuss, "Imaging with terahertz waves," Opt. Lett., vol. 20, no. 16, p. 1716, 1995, doi: 10.1364/ol.20.001716. [2] A. Singh et al., "Up to 70 THz bandwidth from an implanted Ge photoconductive antenna excited by a femtosecond Er:fibre laser," Light Sci. Appl., vol. 9, no. 1, 2020, doi: 10.1038/s41377-020-0265-4 [3] K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express, vol. 11, no. 20, p. 2549, 2003, doi: 10.1364/oe.11.002549. [4] T. C. Bowman, M. El-Shenawee, and L. K. Campbell, "Terahertz Imaging of Excised Breast Tumor Tissue on Paraffin Sections," IEEE Trans. Antennas Propag., vol. 63, no. 5, pp. 2088–2097, 2015, doi: 10.1109/TAP.2015.2406893. [5] D. D.Arnone et al., "Applications of terahertz (THz) technology to medical imaging," Terahertz Spectrosc. Appl. II, vol. 3828, no. May, p. 209, 1999, doi: 10.1117/12.361037. [6] R. J. B.Dietz, M. Gerhard, D. Stanze, M. Koch, B. Sartorius, and M. Schell, "THz generation at 155 µm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions," Opt. Express, vol. 19, no. 27, p. 25911, 2011, doi: 10.1364/oe.19.025911. [7] B. Sartorius et al., "All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths," Opt. Express, vol. 16, no. 13, p. 9565, Jun.2008, doi: 10.1364/oe.16.009565. [8] N. Sekine et al., “Ultrashort lifetime photocarriers in Ge thin films,” Appl. Phys. Lett., vol. 68, no. 24, pp. 3419–3421, 1996, doi: 10.1063/1.115779. [9] A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless Broadband Terahertz Emission from a Germanium Photoconductive Emitter,” ACS Photonics, vol. 5, no. 7, pp. 2718–2723, 2018, doi: 10.1021/acsphotonics.8b00460. [10] R. W. Olesinski and G. J. Abbaschian, Bull. Alloy Phase Diagrams 5, 265 (1984). [11] M. Kim et al., "Polycrystalline GeSn thin films on Si formed by alloy evaporation," Appl. Phys. Express, vol. 8, no. 6, 2015, doi: 10.7567/APEX.8.061301. [12] V. R. D'Costa, J. Tolle, R. Roucka, C. D. Poweleit, J. Kouvetakis, and J. Menéndez, "Raman scattering in Ge1-ySny alloys," Solid State Commun., vol. 144, no. 5–6, pp. 240–244, 2007, doi: 10.1016/j.ssc.2007.08.020. [13] C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, "Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes," Nat. Commun., vol. 4, 2013, doi: 10.1038/ncomms2638. [14] S. H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, "7.5% Optical-to-Terahertz Conversion Efficiency Offered by Photoconductive Emitters With Three-Dimensional Plasmonic Contact Electrodes," IEEE Trans. Terahertz Sci. Technol., vol. 4, no. 5, pp. 575–581, Sep.2014, doi: 10.1109/TTHZ.2014.2342505. [15] C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature, vol. 445, no. 7123, pp. 39–46, 2007, doi: 10.1038/nature05350. [16] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, no. 6950. pp. 824–830, 2003, doi: 10.1038/nature01937. [17] Sang-Gil Park, Yongje Choi, Young-Jae Oh, and Ki-Hun Jeong, "Terahertz photoconductive antenna with metal nanoislands," Opt. Express 20, 25530-25535 (2012) [18] M. A. Mohammad, S. K. Dew, and M. Stepanova, "SML resist processing for high-aspect-ratio and high-sensitivity electron beam lithography," Nanoscale Res. Lett., vol. 8, no. 1, pp. 1–7, 2013, doi: 10.1186/1556-276X-8-139 [19] W. Dou et al., "Investigation of GeSn Strain Relaxation and Spontaneous Composition Gradient for Low-Defect and High-Sn Alloy Growth," Sci. Rep., vol. 8, no. 1, pp. 1–11, 2018, doi: 10.1038/s41598-018-24018-6 [20] Wirths, S., Geiger, R., von den Driesch, N. et al., "Lasing in direct-bandgap GeSn alloy grown on Si, " Nature Photon 9, 88–92 (2015). https://doi.org/10.1038/nphoton.2014.321 [21] S. A.Ghetmiri et al., “Direct-bandgap GeSn grown on silicon with 2230 nm photoluminescence,” Appl. Phys. Lett., vol. 105, no. 15, 2014, doi: 10.1063/1.4898597 [22] R. B. Kohlhaas et al., “637 μ W emitted terahertz power from photoconductive antennas based on rhodium doped InGaAs,” Appl. Phys. Lett., vol. 117, no. 13, pp. 3–7, 2020, doi: 10.1063/5.0020766.
|