|
[1] RobMOTS Challenge, 2021. URL https://eval.vision.rwthaachen.de/ vision/. [2] Wenguan Wang, Hongmei Song, Shuyang Zhao, Jianbing Shen, Sanyuan Zhao, Steven CH Hoi, and Haibin Ling. Learning unsupervised video object segmentation through visual attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3064–3074, 2019. [3] Xiankai Lu, Wenguan Wang, Chao Ma, Jianbing Shen, Ling Shao, and Fatih Porikli. See more, know more: Unsupervised video object segmentation with coattention siamese networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3623–3632, 2019. [4] YuanTing Hu, JiaBin Huang, and Alexander G Schwing. Unsupervised video object segmentation using motion saliencyguided spatiotemporal propagation. In Proceedings of the European conference on computer vision (ECCV), pages 786–802, 2018. [5] Siyang Li, Bryan Seybold, Alexey Vorobyov, Alireza Fathi, Qin Huang, and CC Jay Kuo. Instance embedding transfer to unsupervised video object segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6526–6535, 2018. [6] Jiaxu Miao, Yunchao Wei, and Yi Yang. Memory aggregation networks for efficient interactive video object segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10366–10375, 2020. [7] Yuk Heo, Yeong Jun Koh, and ChangSu Kim. Interactive video object segmentation using global and local transfer modules. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII 16, pages 297–313. Springer, 2020. [8] Jonathon Luiten, Paul Voigtlaender, and Bastian Leibe. Premvos: Proposalgeneration, refinement and merging for video object segmentation. In Asian Conference on Computer Vision, pages 565–580. Springer, 2018. [9] Paul Voigtlaender, Yuning Chai, Florian Schroff, Hartwig Adam, Bastian Leibe, and LiangChieh Chen. Feelvos: Fast endtoend embedding learning for video object segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9481–9490, 2019. [10] Seoung Wug Oh, JoonYoung Lee, Ning Xu, and Seon Joo Kim. Video object segmentation using spacetime memory networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 9226–9235, 2019. [11] Hongje Seong, Junhyuk Hyun, and Euntai Kim. Kernelized memory network for video object segmentation. In European Conference on Computer Vision, pages 629–645. Springer, 2020. [12] Li Hu, Peng Zhang, Bang Zhang, Pan Pan, Yinghui Xu, and Rong Jin. Learning position and target consistency for memorybased video object segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4144–4154, 2021. [13] Zongxin Yang, Yunchao Wei, and Yi Yang. Collaborative video object segmentation by foregroundbackground integration. In European Conference on Computer Vision, pages 332–348. Springer, 2020. [14] Jie Hu, Li Shen, and Gang Sun. Squeezeandexcitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7132–7141, 2018. [15] Zongxin Yang, Yuhang Ding, Yunchao Wei, and Yi Yang. Cfbi+: Collaborative video object segmentation by multiscale foregroundbackground integration. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, volume 1, page 3, 2020. [16] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Girshick. Pointrend: Image segmentation as rendering. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 9799–9808, 2020. [17] Jordi PontTuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex SorkineHornung, and Luc Van Gool. The 2017 davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675, 2017. [18] Sergi Caelles, KevisKokitsi Maninis, Jordi PontTuset, Laura LealTaixé, Daniel Cremers, and Luc Van Gool. Oneshot video object segmentation, 2017. [19] Huaxin Xiao, Jiashi Feng, Guosheng Lin, Yu Liu, and Maojun Zhang. Monet: Deep motion exploitation for video object segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1140–1148, 2018 [20] Paul Voigtlaender and Bastian Leibe. Online adaptation of convolutional neural networks for video object segmentation. arXiv preprint arXiv:1706.09364, 2017. [21] Federico Perazzi, Anna Khoreva, Rodrigo Benenson, Bernt Schiele, and Alexander SorkineHornung. Learning video object segmentation from static images. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2663–2672, 2017. [22] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with convolutional networks. In Proceedings of the IEEE international conference on computer vision, pages 2758–2766, 2015. [23] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask rcnn. In Proceedings of the IEEE international conference on computer vision, pages 2961–2969, 2017. [24] Yuhua Chen, Jordi PontTuset, Alberto Montes, and Luc Van Gool. Blazingly fast video object segmentation with pixelwise metric learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1189–1198, 2018. [25] YuanTing Hu, JiaBin Huang, and Alexander G Schwing. Videomatch: Matching based video object segmentation. In Proceedings of the European conference on computer vision (ECCV), pages 54–70, 2018. [26] Haozhe Xie, Hongxun Yao, Shangchen Zhou, Shengping Zhang, and Wenxiu Sun. Efficient regional memory network for video object segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1286–1295, 2021. [27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017. [28] Brendan Duke, Abdalla Ahmed, Christian Wolf, Parham Aarabi, and Graham W Taylor. Sstvos: Sparse spatiotemporal transformers for video object segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5912– 5921, 2021. [29] LiangChieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):834–848, 2017. [30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. [31] Ning Xu, Linjie Yang, Yuchen Fan, Dingcheng Yue, Yuchen Liang, Jianchao Yang, and Thomas Huang. Youtubevos: A largescale video object segmentation benchmark. arXiv preprint arXiv:1809.03327, 2018
|