帳號:guest(3.142.166.186)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳怡萱
作者(外文):Wu, Yi-Hsuan
論文名稱(中文):混合列高設計之細部擺置
論文名稱(外文):Detailed Placement for Mixed-Row-Height Designs
指導教授(中文):王廷基
指導教授(外文):Wang, Ting-Chi
口試委員(中文):麥偉基
陳勝雄
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:108062609
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:47
中文關鍵詞:細部擺置混和列高設計
外文關鍵詞:Detailed PlacementMixed-Row-Height Designs
相關次數:
  • 推薦推薦:0
  • 點閱點閱:558
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在傳統的製程當中,電路被設計成單一列高且標準電路元件也與列同高,隨著標準電路元件的複雜化,與列同高的元件已無法滿足。為了滿足時序限制,關鍵時序之元件會使用列高較高之標準元件庫,因為列高較高之元件有較強的驅動能力,然而,其面積較大且功率耗損也較多,況且並非所有元件皆為關鍵時序之元件。所以若是所有元件皆使用列高較高之標準元件會導致晶片擺放的整體面積增加和功率耗損增加。為了達到面積以及效能之間的平衡,我們使用混和列高度元件的設計,且每個標準元件有不同高度、寬度的版本選擇,依據標準元件的效能需求而選擇。

在本論文中,我們試著對混合列高之元件進行細部擺置,以求減少繞線線長和溢流。在減少繞線線長方面,受到optimal region (最佳區塊)的啟發,我們試著把標準元件移到最佳區塊,並在最佳區塊不夠標準元件擺放時進行區塊壓縮或標準元件的版本變換。在減少溢流方面則提出擴大分散溢流範圍的演算法來分散標準元件,在減少溢流和繞線線長增長之下達平衡。實驗結果顯示:在合理的時間範圍內我們可以縮短混合列高之設計的繞線線長,且在不增加太多繞線線長的情況下減少設計的溢流。
In a traditional cell-based design, the circuit is divided into uniform-height rows and comprises standard cells which have the same height as the row. However, uniform-row-height cells can no longer satisfy complex design requirements. In order to meet timing constraints, the timing-critical cells will use a standard cell library with a taller cell height, because the cells of taller height have stronger driving capabilities. However, they have a larger area and more power consumption. Moreover, not all the cells are timing-critical. Therefore, if all cells are of taller heights, the overall area and power consumption will increase. In order to achieve a balance between area, performance, and power, mixed-row-height designs have been recently proposed. The placement region for each of such designs is divided into rows of two different heights, and short rows and tall rows are arranged in an interleaving manner. Each cell in the design has one of three possible heights.

In this thesis, we present a detailed placement methodology to reduce wirelength and overflow bins for mixed-row-height designs. To reduce wirelength, inspired by the concept of optimal region, we try to move cells to optimal regions and perform region compression or cell version change when each white space of an optimal region is not large enough for a cell to move in.
To reduce bin overflow, a method to expand the region of overflow bins is proposed to spread cells and achieves a balance under the reduction of overflow bins and wirelength growth. The experimental results show that we can not only shorten the wirelength of a mixed-row-height design with a reasonable runtime but also reduce the number of overflow bins.
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2 Problem Formulation 5
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . .6
2.1.1 HPWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
2.1.2 Bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
2.1.3 Optimal Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
3 Methodology 10
3.1 Overall Working Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
3.2 HPWL­-Optimized Method . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.2.1 Get the Revised Optimal Region . . . . . . . . . . . . . . . . . . . . .13
3.2.2 Shift Optimal Region’s Cells . . . . . . . . . . . . . . . . . . . .15
3.2.3 Cell Version Change . . . . . . . . . . . . . . . . . . . . . . . . . . .16
3.3 Density­-Optimized Method . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
3.3.1 Find Congested Bin and Expand the Range . . . . . . . . . . . . . . . .23
3.3.2 Calculate Approximately Average Gap Width for the Primary Cells . .24
3.3.3 Move the Primary Cells and Other Cells . . . . . . . . . . . . . . . . .27
4 Experimental Results 28
4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
4.2.1 Analysis of the Experiment of the HPWL-­optimized Method . . . . . . .33
4.2.2 Analysis of the Experiment of the Density­-optimized Method . . . . . .40
5 Conclusion 45
References 46
1. S. Goto, “An efficient algorithm for the two-­dimensional placement problem in electrical circuit layout,” IEEE transactions on circuits and systems, vol.28, no.1, pp.12–18, 1981.
2. M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective detailed placement al­gorithm,” in International Conference on Computer-Aided Design, 2005.,pp. 48–55, 2005.
3. S.­H.Baek, H.­Y.Kim, Y.­K.Lee, D.­Y.Jin, S.­C.Park,andJ.­D.Cho, “Ultra­high density standard cell library using multi-­height cell structure,” in Smart Structures, Devices, and Systems IV, vol. 7268, p. 72680C, International Society for Optics and Photonics, 2008.
4. H.Zhou, W.Wu, and X.Hong, “Paflo: afaststandard­celldetailedplacementalgorithm,” in IEEE International Conference on Communications, Circuits and Systems and WestSino Expositions, vol. 2, pp. 1401–1405, 2002.
5. C. M. Fiduccia and R. M. Mattheyses, “A linear­time heuristic for improving network partitions,” in 19th design automation conference, pp. 175–181, IEEE, 1982.
6. X. Yang, M. Sarrafzadeh, et al., “Dragon2000: Standard­cell placement tool for largeindustry circuits,” in International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No. 00CH37140), pp. 260–263, 2000.
7. K.Doll,F.M.Johannes,andK.J.Antreich,“Iterative placement improvement by network flow methods,” IEEE Transactions on Computer­-Aided Design of Integrated Circuits and Systems, vol. 13, no. 10, pp. 1189–1200, 1994.
8. A. B. Kahng, P. Tucker, and A. Zelikovsky, “Optimization of linear placements for wire­length minimization with free sites,” in Proceedings of the ASP­DAC’99 Asia and South Pacific Design Automation Conference 1999 (Cat. No. 99EX198), pp. 241–244, IEEE,1999.
9. S. Popovych, H.­H. Lai, C.­M. Wang, Y.­L. Li, W.­H. Liu, and T.­C. Wang, “Density­-aware detailed placement with instant legalization,” in Design Automation Conference, pp. 1–6, 2014.
10. J. Cong and M. Xie, “A robust detailed placement for mixed­size ic designs,” in Asia and South Pacific Conference on Design Automation, 2006., pp. 7–pp, IEEE, 2006.
11. T. Taghavi, Z. Li, C. Alpert, G.­J. Nam, A. Huber, and S. Ramji, “New placement predic­tion and mitigation techniques for local routing congestion,” in International Conference on Computer-­Aided Design, pp. 621–624, 2010.
12. Y. Zhang and C. Chu, “Crop: Fast and effective congestion refinement of placement,” in International Conference on Computer­-Aided Design-­Digest of Technical Papers, pp. 344–350, 2009.
13. G. Wu and C. Chu, “Detailed placement algorithm for vlsi design with double-­row height standard cells,” IEEE Transactions on Computer­-Aided Design of Integrated Circuits and Systems, vol. 35, no. 9, pp. 1569–1573, 2015.
14. Y. Lin, B. Yu, X. Xu, J.­R. Gao, N. Viswanathan, W.­H. Liu, Z. Li, C. J. Alpert, andD. Z. Pan, “Mrdp: Multiple­row detailed placement of heterogeneous­-sized cells for ad­vanced nodes,” IEEE Transactions on Computer-­Aided Design of Integrated Circuits and Systems, vol. 37, no. 6, pp. 1237–1250, 2017.
15. S.Dobre, A.B.Kahng, and J.Li, “Mixed-cell­-height implementation for improved design quality in advanced nodes,” in International Conference on Computer-­Aided Design, pp. 854–860, 2015.
16. A. B. Kahng, “Advancing placement,” in Proceedings of the 2021 International Sympo­sium on Physical Design, pp. 15–22, 2021.
17. T.­L. Hsiung, Placement Legalization for Mixed­-Row­-Height Designs. master thesis, National Tsing Hua University, 2020.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *