帳號:guest(18.220.116.195)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林泓諭
作者(外文):Lin, Hung-Yu
論文名稱(中文):在間歇系統上最小化資料年齡
論文名稱(外文):Minimizing System Age of Information on Intermittent Systems
指導教授(中文):石維寬
指導教授(外文):Shih, Wei-Kuan
口試委員(中文):張原豪
梁郁珮
口試委員(外文):Chang, Yuan-Hao
Liang, Yu-Pei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:108062604
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:26
中文關鍵詞:間歇系統能源採集技術資料新鮮度排程演算法
外文關鍵詞:Intermittent SystemEnergy HarvestData FreshnessScheduling Algorithm
相關次數:
  • 推薦推薦:0
  • 點閱點閱:83
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
能源採集技術由於維修和充電成本低、永續性佳且不會受到壽命限制等等優點,逐漸
取代傳統電池成為新興的供電方式。使用能源採集技術的偵測器也被用在各種即時系統
的應用中,例如空氣品質、水庫水質、森林大火、交通狀況、人體數值監測等等。這些
偵測器由於供電受到環境影響而較微弱且不穩定、造成系統間歇的執行,需要等待下次
能源充足時方能繼續執行。採集的資料常常因為無法被如期的即時傳送而失真,因此資
料新鮮度是一個很重要的考量。本文提出一種新穎的演算法能夠最小化系統的資料年齡,
使得採集而來的資料得以盡可能的維持新鮮度,藉由對偵測器行為的預測和更新頻率的
平均,本篇的方法經由實驗結果表明得以有效的降低資料平均年齡,相比其他現有方法
更能維持資料新鮮度。
Energy harvesting sensor nodes are widely used in real time systems due to its low
maintenance and high sustainability. However, these nodes suffer from unstable power
supply which causes the intermittent system execution. With the passage of time, the
sensed data become obsolete which results in distortion of reality [1]. Without knowing
the accurate time of recovery, data freshness is considered one of the critical attributes.
We make use of the concept of Age of Information (AOI) which enables us to quantify
the freshness of the sensed data. In this thesis, a new scheme for minimizing the average
AOI has been investigated. The proposed scheme first predicts the pattern of every nodes
utilizing moving average, then maintain a buffer in transmitter which keeps the latest updated data. Through our replacement technique implemented on the buffer, we minimize
the average AOI of all data. Simulation results indicate that the proposed method achieve
better average AOI as compared with the existing schemes.
摘要i
Abstract ii
1 Introduction 1
2 Related Work 3
3 Background and Motivation 5
3.1 System Model and Architecture . . . . . . . . . . . . . . . . . . . . . 5
3.2 Age of Information (AoI) . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Method 10
5 Performance Evaluation 16
5.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Worst Case Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6 Conclusion 23
[1] Kim, J. E., Abdelzaher, T., Sha, L., Bar-Noy, A., Hobbs, R. (2016, November).
”Sporadic decision-centric data scheduling with normally-off sensors.” In 2016
IEEE Real-Time Systems Symposium (RTSS) (pp. 135-145). IEEE.
[2] Zhang, D., Vance, N., Wang, D. (2018, April). Demo Abstract: ”Real-Time
Heterogeneous Edge Computing System for Social Sensing Applications.” In
2018 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS) (pp. 101-102). IEEE
[3] Zhou, Y., Zhao, M., Ju, L., Xue, C. J., Li, X., Jia, Z. (2017, August). ”Energyaware morphable cache management for self-powered non-volatile processors.” In
2017 IEEE 23rd International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA) (pp. 1-7). IEEE.
[4] Xie, M., Zhao, M., Pan, C., Li, H., Liu, Y., Zhang, Y., ... Hu, J. (2016, October).”Checkpoint aware hybrid cache architecture for NV processor in energy
harvesting powered systems.” In 2016 International Conference on Hardware/
Software Codesign and System Synthesis (CODES+ ISSS) (pp. 1-10). IEEE.
[5] Kang, C. K., Lin, C. H., Hsiu, P. C., Chen, M. S. (2018, July). ”HomeRun:
HW/SW co-design for program atomicity on self-powered intermittent systems.”
In Proceedings of the International Symposium on Low Power Electronics and
Design (pp. 1-6).
[6] Lin, Y. C., Hsiu, P. C., Kuo, T. W. (2019, July). ”Autonomous I/O for intermittent IoT systems.” In 2019 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED) (pp. 1-6). IEEE.
[7] Xie, M., Pan, C., Hu, J., Yang, C., Chen, Y. (2015, January). ”Checkpoint-aware
instruction scheduling for nonvolatile processor with multiple functional units.”
In The 20th Asia and South Pacific Design Automation Conference (pp. 316-321).
IEEE.
[8] Cronin, P., Yang, C., Liu, Y. (2018, July). ”Reliability and security in nonvolatile processors, two sides of the same coin.” In 2018 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI) (pp. 112-117). IEEE.
[9] Kaul, S., Yates, R., Gruteser, M. (2012, March). ”Real-time status: How often
should one update?.” In 2012 Proceedings IEEE INFOCOM (pp. 2731-2735).
IEEE.
[10] Karimi, M., Kim, H. (2020). ”Energy scheduling for task execution on
intermittently-powered devices.” ACM SIGBED Review, 17(1), 36-41.
[11] Zhou, Z., Yun, Z., Fu, C., Xue, C. J., Han, S. (2020, December). ”Maintaining
Real-Time Data Freshness in Wireless Powered Communication Networks.” In
2020 IEEE Real-Time Systems Symposium (RTSS) (pp. 166-177). IEEE.
[12] Jia, R., Zhang, J., Liu, P., Liu, X. Y., Gan, X., Wang, X. (2017). ”Data backlog
analysis in energy harvesting communication systems.” IEEE Access, 5, 5702-
5712.
[13] Kosta, A., Pappas, N., Angelakis, V. (2017). ”Age of information: A new concept, metric, and tool. Foundations and Trends in Networking”, 12(3), 162-259.
[14] Yates, R. D., Sun, Y., Brown, D. R., Kaul, S. K., Modiano, E., Ulukus, S.
(2021). ”Age of information: An introduction and survey.” IEEE Journal on Selected Areas in Communications, 39(5), 1183-1210.
[15] ALI, Muhammad Intizar; GAO, Feng; MILEO, Alessandra. ”Citybench: A
configurable benchmark to evaluate rsp engines using smart city datasets.” In:
International Semantic Web Conference. Springer, Cham, 2015. p. 374-389.
[16] Alberts, D. S., Papp, D. S. (1997). ”The information age: An anthology on its
impact and consequences.” Office of the Assistant Secretary of Defense Washington DC Command and Control Research Program (CCRP).
[17] The Breathe London Network Dataset: AQMesh https://
www.breathelondon.org/
[18] New York City air quality surveillance data : https:// opendata.cityofnewyork.us/data/
[19] BI, Suzhi; HO, Chin Keong; ZHANG, Rui. ”Wireless powered communication:
Opportunities and challenges.” IEEE Communications Magazine, 2015, 53.4: 117-
125.
[20] ZHOU, Xun; ZHANG, Rui; HO, Chin Keong. ”Wireless information and power
transfer: Architecture design and rate-energy tradeoff.” IEEE Transactions on
communications, 2013, 61.11: 4754-4767.
[21] ZHU, Yongqiang; LIU, Jiahao; YANG, Xiaohua. ”Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection.” Applied Energy, 2020, 264: 114647.
[22] CC1101 Low-Power Sub-1 GHz RF Transceiver datasheet
[23] 2.4 GHz IEEE 802.15.4 / ZigBee-Ready RF Transceiver datasheet
[24] CRABTREE, George W.; LEWIS, Nathan S. ”Solar energy conversion.” Physics
today, 2007, 60.3: 37-42.
[25] OLIVO, Jacopo; CARRARA, Sandro; DE MICHELI, Giovanni. ”Energy harvesting and remote powering for implantable biosensors.” IEEE Sensors Journal,
2010, 11.7: 1573-1586
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *