|
Bibliography [1] Baker, B., Gupta, O., Naik, N., and Raskar, R. Designing neural network architectures using reinforcement learning. CoRR abs/1611.02167 (2016). [2] Bernal, J., Sánchez, F., FernándezEsparrach, G., Gil, D., Rodríguez, C., and Vilariño, F. Wmdova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Computerized Medical Imaging and Graphics 43 (Jan. 2015), 99– 111. [3] Cai, H., Zhu, L., and Han, S. Proxylessnas: Direct neural architecture search on target task and hardware. CoRR abs/1812.00332 (2018). [4] Chao, P., Kao, C., Ruan, Y., Huang, C., and Lin, Y. Hardnet: A low memory traffic network. CoRR abs/1909.00948 (2019). [5] Deng, J., Dong, W., Socher, R., Li, L., Kai Li, and Li FeiFei. Imagenet: A largescale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009), pp. 248–255. [6] Fan, D.P., Ji, G.P., Zhou, T., Chen, G., Fu, H., Shen, J., and Shao, L. Pranet: Parallel reverse attention network for polyp segmentation, 2020. [7] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). [8] Howard, A., Sandler, M., Chu, G., Chen, L., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V., and Adam, H. Searching for mobilenetv3. CoRR abs/1905.02244 (2019). [9] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. CoRR abs/1704.04861 (2017). [10] Huang, C.H., Wu, H.Y., and Lin, Y.L. Hardnetmseg: A simple encoderdecoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps, 2021. [11] Huang, G., Liu, Z., and Weinberger, K. Q. Densely connected convolutional networks. CoRR abs/1608.06993 (2016). [12] Jha, D., Smedsrud, P. H., Riegler, M. A., Halvorsen, P., de Lange, T., Johansen, D., and Johansen, H. D. Kvasirseg: A segmented polyp dataset, 2019. 31[13] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 36, 2012, Lake Tahoe, Nevada, United States (2012), pp. 1106– 1114. [14] Larsson, G., Maire, M., and Shakhnarovich, G. Fractalnet: Ultradeep neural networks without residuals. CoRR abs/1605.07648 (2016). [15] Lee, Y., Hwang, J., Lee, S., Bae, Y., and Park, J. An energy and gpucomputation efficient backbone network for realtime object detection. CoRR abs/1904.09730 (2019). [16] Liu, H., Simonyan, K., and Yang, Y. DARTS: differentiable architecture search. CoRR abs/1806.09055 (2018). [17] Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L. Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation. CoRR abs/1801.04381 (2018). [18] Silva, J., Histace, A., Romain, O., Dray, X., and Granado, B. Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer. International journal of computer assisted radiology and surgery 9, 2 (March 2014), 283—293. [19] Simonyan, K., and Zisserman, A. Very deep convolutional networks for largescale image recognition. arXiv preprint arXiv:1409.1556 (2014). [20] Tajbakhsh, N., Gurudu, S., and Liang, J. Automated polyp detection in colonoscopy videos using shape and context information. IEEE Transactions on Medical Imaging 35, 2 (Feb. 2016), 630–644. Publisher Copyright: © 2015 IEEE. Copyright: Copyright 2017 Elsevier B.V., All rights reserved. [21] Tan, M., and Le, Q. V. Efficientnet: Rethinking model scaling for convolutional neural networks. CoRR abs/1905.11946 (2019). [22] Vázquez, D., Bernal, J., Sánchez, F. J., FernándezEsparrach, G., López, A. M., Romero, A., Drozdzal, M., and Courville, A. C. A benchmark for endoluminal scene segmentation of colonoscopy images. CoRR abs/1612.00799 (2016). [23] Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., and Keutzer, K. Fbnet: Hardwareaware efficient convnet design via differentiable neural architecture search. CoRR abs/1812.03443 (2018). [24] Zhong, Z., Yan, J., and Liu, C. Practical network blocks design with qlearning. CoRR abs/1708.05552 (2017). |