|
[1] Alfred, V. (2014). Algorithms for finding patterns in strings. Algorithms and Complexity, 1, 255. [2] Arbib, C., Pınar, M. Ç., Rossi, F. and Tessitore, A. (2020). Codon optimization by 0-1 linear programming. Computers and Operations Research, 119, 104932. [3] Cherry, J. M., Hong, E. L., Amundsen, C., Balakrishnan, R., Binkley, G., Chan, E. T., Christie, K. R., Costanzo, M. C., Dwight, S. S., Engel, S. R., Fisk, D. G., Hirschman, J. E., Hitz, B. C., Karra, K., Krieger, C. J., Miyasato, S. R., Nash, R. S., Park, J., Skrzypek, M. S., Simison, M., Weng, S. and Wong, E. D. (2012). Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Research, 40(D1), D700-D705. [4] Cohen, B. and Skiena, S. (2003). Natural selection and algorithmic design of mRNA. Journal of Computational Biology, 10(3-4), 419-432. [5] Condon, A. and Thachuk, C. (2012). Efficient codon optimization with motif engineering. Journal of Discrete Algorithms, 16, 104-112. [6] ENCODE Project Consortium. (2004). The ENCODE (ENCyclopedia of DNA elements) project. Science, 306(5696), 636-640. [7] Gaspar, P., Moura, G., Santos, M. A. and Oliveira, J. L. (2013). mRNA secondary structure optimization using a correlated stem–loop prediction. Nucleic Acids Research, 41(6), e73-e73. [8] Gould, N., Hendy, O. and Papamichail, D. (2014). Computational tools and algorithms for designing customized synthetic genes. Frontiers in Bioengineering and Biotechnology, 2, 41.
[9] Gu, W., Zhou, T. and Wilke, C. O. (2010). A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes. PLoS Computational Biology, 6(2), e1000664. [10] Guimaraes, J. C., Rocha, M., Arkin, A. P. and Cambray, G. (2014). D-Tailor: automated analysis and design of DNA sequences. Bioinformatics, 30(8), 1087-1094. [11] Gustafsson, C., Govindarajan, S. and Minshull, J. (2004). Codon bias and heterologous protein expression. Trends in Biotechnology, 22(7), 346-353. [12] Hofacker, I. L. (2003). Vienna RNA secondary structure server. Nucleic Acids Research, 31(13), 3429-3431. [13] Mauger, D. M., Cabral, B. J., Presnyak, V., Su, S. V., Reid, D. W., Goodman, B., Link, K., Khatwani, N., Reynders, J., Moore, M. J., and McFadyen, I. J. (2019). mRNA structure regulates protein expression through changes in functional half-life. Proceedings of the National Academy of Sciences, 116(48), 24075-24083. [14] Nussinov, R. and Jacobson, A. B. (1980). Fast algorithm for predicting the secondary structure of single-stranded RNA. Proceedings of the National Academy of Sciences, 77(11), 6309-6313. [15] Satya, R. V., Mukherjee, A. and Ranga, U. (2003, August). A pattern matching algorithm for codon optimization and CpG motif-engineering in DNA expression vectors. In Computational Systems Bioinformatics. Proceedings of the 2003 IEEE Bioinformatics Conference CSB2003, 294-305. [16] Seligmann, H. (2019). Localized context-dependent effects of the “ambush” hypothesis: more off-frame stop codons downstream of shifty codons. DNA and Cell Biology, 38(8), 786-795. [17] Şen, A., Kargar, K., Akgün, E. and Pınar, M. Ç. (2020). Codon optimization:a mathematical programing approach. Bioinformatics, 36(13), 4012-4020.
[18] Sharp, P. M., & Li, W. H. (1987). The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research, 15(3), 1281-1295. [19] Terai, G., Kamegai, S. and Asai, K. (2016). CDSfold: an algorithm for designing a protein-coding sequence with the most stable secondary structure. Bioinformatics, 32(6), 828-834. [20] Wright, F. (1990). The ‘effective number of codons’ used in a gene. Gene, 87(1), 23-29. [21] Zuker, M. and Stiegler, P. (1981). Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research, 9(1), 133-148.
|