帳號:guest(18.225.92.76)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周猷翔
作者(外文):Chou, Yu-Hsiang
論文名稱(中文):基於金字塔式對抗生成網路的可控制筆觸風格轉移
論文名稱(外文):A Controllable-­Brushstroke Style­-Transfer Method using Pyramid Generative Adversarial Networks
指導教授(中文):黃婷婷
指導教授(外文):Hwang, Ting-Ting
口試委員(中文):吳中浩
劉一宇
口試委員(外文):Wu, Allen C.-H.
Liu, Yi-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:108062591
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:31
中文關鍵詞:風格轉換
外文關鍵詞:Style transfer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:156
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本論文中,我們提出了一種快速、筆劃可控的風格轉換架構,並且能轉換單一藝術家的風格。我們引入了類似金字塔架構的對抗生成網路,來捕獲不同的感受野,使這些不同的感受野可以生成各種不同筆觸大小的圖像。我們的模型可以模仿一個藝術家的藝術風格,而不僅僅是單ㄧㄧ幅繪畫的風格。接著我們使用遮罩陣列將各種筆觸大小的圖像融合為一張圖像,並解決不同筆觸大小圖像之間的色調一致性問題。最後,我們進行了一系列實驗來證明我們提出的方法的有效。
In this thesis, we propose a fast, stroke controllable style­transfer with an artist’s art style. Using the GAN as the base model, we introduce a pyramid­liked archi­tecture to capture the different receptive fields which can produce images with various brushstroke sizes. We also can imitate an artist’s art style, not only a single style instance. We then use a mask array to fuse the regions of various brushstroke sizes into one image, and solve the color tone consistency problem between the regions of various brushstroke sizes. Finally, we perform a series of experiments to demonstrate the effectiveness of our proposed method.
Contents
Acknowledgements
摘要 i
Abstract ii
1 Introduction 1
2 Related Work 3
3 Problem Description 7
4 The Proposed Methods 10
4.1 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Fuse the different brushstroke size image . . . . . . . . . . . . . . . . . . . . . 13
4.3 Fused image color correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Implementation 17
6 The Experiment Results 20
7 Conclusions 28
Bibliography 30
[1] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A simple framework for contrastive
learning of visual representations. In International conference on machine learning (2020),
PMLR, pp. 1597–1607.
[2] Chen, T. Q., and Schmidt, M. Fast patch­based style transfer of arbitrary style. arXiv
preprint arXiv:1612.04337 (2016).
[3] Efros, A. A., and Freeman, W. T. Image quilting for texture synthesis and transfer. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques
(2001), pp. 341–346.
[4] Efros, A. A., and Leung, T. K. Texture synthesis by non­parametric sampling. In Proceedings of the seventh IEEE international conference on computer vision (1999), vol. 2,
IEEE, pp. 1033–1038.
[5] Gatys, L., Ecker, A. S., and Bethge, M. Texture synthesis using convolutional neural
networks. Advances in neural information processing systems 28 (2015), 262–270.
[6] Gatys, L. A., Ecker, A. S., and Bethge, M. Image style transfer using convolutional neural
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (2016), pp. 2414–2423.
[7] Gatys, L. A., Ecker, A. S., Bethge, M., Hertzmann, A., and Shechtman, E. Controlling
perceptual factors in neural style transfer. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2017), pp. 3985–3993.
[8] Goodfellow, I., Pouget­Abadie, J., Mirza, M., Xu, B., Warde­Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. Generative adversarial nets. Advances in neural information processing systems 27 (2014).
[9] Heeger, D. J., and Bergen, J. R. Pyramid­based texture analysis/synthesis. In Proceedings
of the 22nd annual conference on Computer graphics and interactive techniques (1995),
pp. 229–238.
[10] Huang, X., and Belongie, S. Arbitrary style transfer in real­time with adaptive instance
normalization. In Proceedings of the IEEE International Conference on Computer Vision
(2017), pp. 1501–1510.
[11] Isola, P., Zhu, J.­Y., Zhou, T., and Efros, A. A. Image­to­image translation with conditional
adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition (2017), pp. 1125–1134.
30
[12] Jing, Y., Liu, Y., Yang, Y., Feng, Z., Yu, Y., Tao, D., and Song, M. Stroke controllable fast
style transfer with adaptive receptive fields. In Proceedings of the European Conference
on Computer Vision (ECCV) (2018), pp. 238–254.
[13] Johnson, J., Alahi, A., and Fei­Fei, L. Perceptual losses for real­time style transfer and
super­resolution. In European conference on computer vision (2016), Springer, pp. 694–
711.
[14] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).
[15] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient­based learning applied to
document recognition. Proceedings of the IEEE 86, 11 (1998), 2278–2324.
[16] Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., and Yang, M.­H. Universal style transfer via
feature transforms. arXiv preprint arXiv:1705.08086 (2017).
[17] Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., and Paul Smolley, S. Least squares
generative adversarial networks. In Proceedings of the IEEE international conference on
computer vision (2017), pp. 2794–2802.
[18] Park, D. Y., and Lee, K. H. Arbitrary style transfer with style­attentional networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2019), pp. 5880–5888.
[19] Park, T., Efros, A. A., Zhang, R., and Zhu, J.­Y. Contrastive learning for unpaired imageto­image translation. In European Conference on Computer Vision (2020), Springer,
pp. 319–345.
[20] Risser, E., Wilmot, P., and Barnes, C. Stable and controllable neural texture synthesis and
style transfer using histogram losses. arXiv preprint arXiv:1701.08893 (2017).
[21] Sanakoyeu, A., Kotovenko, D., Lang, S., and Ommer, B. A style­aware content loss for
real­time hd style transfer. In proceedings of the European conference on computer vision
(ECCV) (2018), pp. 698–714.
[22] Shaham, T. R., Dekel, T., and Michaeli, T. Singan: Learning a generative model from
a single natural image. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (2019), pp. 4570–4580.
[23] Wada, K. labelme: Image Polygonal Annotation with Python. https://github.com/
wkentaro/labelme, 2016.
[24] Yao, Y., Ren, J., Xie, X., Liu, W., Liu, Y.­J., and Wang, J. Attention­aware multi­stroke
style transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019), pp. 1467–1475.
[25] Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A. Self­attention generative adversarial networks. In International conference on machine learning (2019), PMLR, pp. 7354–
7363.
[26] Zhu, J.­Y., Park, T., Isola, P., and Efros, A. A. Unpaired image­to­image translation using
cycle­consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision (2017), pp. 2223–2232.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *