帳號:guest(18.117.231.127)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡湘俊
作者(外文):Tsai, Hsiang-Chun
論文名稱(中文):無人機在多個受限區域進行監視的完成時間最小化
論文名稱(外文):Completion Time Minimization for UAV-Enabled Surveillance over Multiple Restricted Regions
指導教授(中文):許健平
指導教授(外文):Sheu, Jang-Ping
口試委員(中文):洪樂文
陳裕賢
口試委員(外文):Hong, Yao-Win
Chen, Yuh-Shyan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:108062572
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:36
中文關鍵詞:無人機通訊路徑優化無線感測網路數據收集動態規劃
外文關鍵詞:UAV CommunicationsTrajectory OptimizationWireless Sensor NetworksData GatheringDynamic Programming
相關次數:
  • 推薦推薦:0
  • 點閱點閱:249
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文研究了在多個限制區域內啟用無人機的監視任務,旨在確定最佳的無人機飛行路徑,以最大限度地減少任務的總完成時間。由於政府法規或對抗性問題,無人機被禁止飛入限制區域,因此只能在這些區域的邊界收集資訊。只要滿足每個區域所需的監視時間,就能完成整個監視任務。我們觀察到,在滿足所需的監視持續時間的同時,無人機無需停留在固定位置,而是可以沿著限制區域的邊界移動,一旦完成了本地監視任務,就可以減少到下一個區域的距離。為了利用這一優勢,我們提出了一個最小完成時間(MinTime)演算法,該演算法首先通過旅行商問題(TSP)的近似解來確定區域的拜訪順序,然後使用動態規劃在限制區域序列上優化無人機的飛行路徑。在存在障礙物的情況下,我們進一步提出障礙物感知的最小完成時間(OA-MinTime)演算法,該演算法將每個障礙物視為監視時間為零的額外限制區域,使無人機能夠更有效地避開障礙物。此外,考慮到每個興趣點間在路徑上繞過障礙物所需的額外距離,我們還提出了一個修正的TSP解決方案。模擬結果表明,與傳統的最小距離方法相比,提出的MinTime和OA-MinTime演算法皆可以顯著減少總完成時間。
This work examines a UAV-enabled surveillance mission over multiple restricted regions and aims to determine the optimal UAV trajectory that minimizes the overall completion time of the mission. The UAV is prohibited from entering the restricted regions due to government regulations or adversarial concerns, and, thus, can only gather information at the boundaries of these regions. The surveillance mission is completed by satisfying the required surveillance duration for every region. We observe that, while fulfilling the required surveillance duration, the UAV need not stay at a fixed position but can instead move along the boundary of the restricted region to reduce its distance to the next region once the local surveillance task is completed. To exploit this advantage, we propose a minimum completion time (MinTime) algorithm that first determines the visiting order of the regions by employing an approximate solution to the traveling salesman problem (TSP) and then optimizes the UAV trajectory over the sequence of restricted regions using dynamic programming. In the presence of obstacles, we further propose an obstacle-aware MinTime (OA-MinTime) algorithm that treats each obstacle as an additional restricted region with zero surveillance duration, allowing the UAV to avoid the obstacles in a more efficient manner. A modified TSP solution is also proposed by taking into consideration the additional distance required to circumvent the obstacles on each inter-POI path. Simulation results show that the proposed MinTime and OA-MinTime algorithms can significantly reduce the total completion time compared to the conventional minimum distance approaches.
1. Introduction ................................................................ 1
2. Related Work ................................................................ 4
3. System Model and Problem Formulation ........................................ 9
3.1 System Model ............................................................... 9
3.2 Problem Formulation ........................................................ 12
4. Minimum Completion Time Trajectory Optimization via Dynamic Programming ..... 13
5. Extension of the MinTime Algorithm to the Case with Obstacles ............... 18
6. Simulation Results .......................................................... 23
6.1 Simulation Setting ......................................................... 23
6.2 Simulation Results ......................................................... 25
6.2.1 Total Completion Time versus the Number of POIs .......................... 25
6.2.2 Total Completion Time versus Surveillance Time ........................... 27
6.2.3 Total Completion Time versus the Mean Radius of the Restricted Regions ... 29
6.2.4 Total Completion Time versus the Number of Obstacles ..................... 30
7. Conclusion .................................................................. 32
References ..................................................................... 33
[1] A. Fahim and Y. Gadallah,“An optimized LTE-based technique for drone base station dynamic 3D placement and resource allocation in delay-sensitive M2M networks,”IEEE Transactions on Mobile Computing (Early Access), 2021.

[2] E. Arribas, V. Mancuso, and V. Cholvi,“Coverage optimization with a dynamic network of drone relays,”IEEE Transactions on Mobile Computing, vol. 19, no. 10, pp. 2278–2298, 2020.

[3] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah,“A tutorial on UAVs for wireless networks: Applications, challenges, and open problems,”IEEE Communications Surveys and Tutorials, vol. 21, no. 3, pp. 2334–2360, 2019.

[4] C. You and R. Zhang,“3D trajectory optimization in Rician fading for UAV-enabled data harvesting,”IEEE Transactions on Wireless Communications, vol. 18, no. 6, pp. 3192–3207, 2019.

[5] X. Chen, Z. Feng, Z. Wei, F. Gao, and X. Yuan,“Performance of joint sensing-communication cooperative sensing UAV network,”IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 15545–15556, 2020.

[6] N. H. Motlagh, M. Bagaa, and T. Taleb,“UAV-based IoT platform: A crowd surveillance use case,”IEEE Communications Magazine, vol. 55, no. 2, pp. 128–134, 2017.

[7] A. Brown and D. Anderson,“Trajectory optimization for high-altitude long-endurance UAV maritime radar surveillance,”IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 3, pp. 2406–2421, 2020.

[8] D. Han, W. Chen, and J. Liu,“Energy-efficient UAV communications under stochastic trajectory: A Markov decision process approach,”IEEE Transactions on Green Communications and Networking, vol. 5, no. 1, pp. 106–118, 2021.

[9] S. Hosseinalipour, A. Rahmati, D. Y. Eun, and H. Dai,“Energy-aware stochastic UAV-assisted surveillance,”IEEE Transactions on Wireless Communications, vol. 20, no. 5, pp. 2820–2837, 2021.

[10] H. Huang and A. V. Savkin,“Navigating UAVs for optimal monitoring of groups of moving pedestrians or vehicles,”IEEE Transactions on Vehicular Technology, vol. 70, no. 4, pp. 3891–3896, 2021.

[11] H. Teng, I. Ahmad, A. Msm, and K. Chang,“3D optimal surveillance trajectory planning for multiple UAVs by using particle swarm optimization with surveillance area priority,”IEEE Access, vol. 8, pp. 86316–86327, 2020.

[12] D. Yang, Q. Wu, Y. Zeng, and R. Zhang,“Energy tradeoff in ground-to-UAV communication via trajectory design,”IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6721–6726, 2018.

[13] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah,“Mobile unmanned aerial vehicles (UAVs) for energy-efficient internet of things communications,”IEEE Transactions on Wireless Communications, vol. 16, no. 11, pp. 7574–7589, 2017.

[14] J. Gong, T.-H. Chang, C. Shen, and X. Chen,“Flight time minimization of UAV for data collection over wireless sensor networks,”IEEE Journal on Selected Areas in Communications, vol. 36, no. 9, pp. 1942–1954, 2018.

[15] J. Zhang, Y. Zeng, and R. Zhang,“UAV-enabled radio access network: Multi-mode communication and trajectory design,”IEEE Transactions on Signal Processing, vol. 66, no. 20, pp. 5269–5284, 2018.

[16] M. Chen, W. Liang, and J. Li,“Energy-efficient data collection maximization for UAV-assisted wireless sensor networks,”in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–7, 2021.

[17] Y. Li, W. Liang, W. Xu, Z. Xu, X. Jia, Y. Xu, and H. Kan,“Data collection maximization in IoT-sensor networks via an energy-constrained UAV,”IEEE Transactions on Mobile Computing (Early Access), 2021.

[18] C. Shen, T.-H. Chang, J. Gong, Y. Zeng, and R. Zhang,“Multi-UAV interference coordination via joint trajectory and power control,”IEEE Transactions on Signal Processing, vol. 68, pp. 843–858, 2020.

[19] D. Ebrahimi, S. Sharafeddine, P.-H. Ho, and C. Assi,“UAV-aided projection-based compressive data gathering in wireless sensor networks,”IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1893–1905, 2019.

[20] C. Lin, G. Han, X. Qi, J. Du, T. Xu, and M. Mart´ınez-Garc´ıa,“Energy-optimal data collection for unmanned aerial vehicle-aided industrial wireless sensor network-based agricultural monitoring system: A clustering compressed sampling approach,”IEEE Transactions on Industrial Informatics, vol. 17, no. 6, pp. 4411–4420, 2021.

[21] L. Shen, N. Wang, Z. Zhu, Y. Fan, X. Ji, and X. Mu,“UAV-enabled data collection for mMTC networks: AEM modeling and energy-efficient trajectory design,”in Proceedings of IEEE International Conference on Communications (ICC), pp. 1–6, 2020.

[22] J. Baek, S. I. Han, and Y. Han,“Energy-efficient UAV routing for wireless sensor networks,”IEEE Transactions on Vehicular Technology, vol. 69, no. 2, pp. 1741–1750, 2020.

[23] S.-H. Yeh, Y.-S. Wang, T. D. P. Perera, Y.-W. Peter Hong, and D. N. K. Jayakody,“UAV trajectory optimization for data-gathering from backscattering sensor networks,”in Proceedings of IEEE International Conference on Communications (ICC), pp. 1–6, 2020.

[24] S. Lhazmir, O. A. Oualhaj, A. Kobbane, E. M. Amhoud, and J. Ben-Othman,“UAV for wireless power transfer in IoT networks: A GMDP approach,”in Proceedings of IEEE International Conference on Communications (ICC), pp. 1–6, 2020.

[25] Y.-C. Kuo, J.-H. Chiu, J.-P. Sheu, and Y.-W. P. Hong,“UAV deployment and IoT device association for energy-efficient data-gathering in fixed-wing multi-UAV networks,”IEEE Transactions on Green Communications and Networking (Early Access), 2021.

[26] J. Li, H. Zhao, H. Wang, F. Gu, J. Wei, H. Yin, and B. Ren,“Joint optimization on trajectory, altitude, velocity, and link scheduling for minimum mission time in UAV-aided data collection,”IEEE Internet of Things Journal, vol. 7, no. 2, pp. 1464–1475, 2020.

[27] O. M. Bushnaq, A. Celik, H. Elsawy, M.-S. Alouini, and T. Y. Al-Naffouri,“Aeronautical data aggregation and field estimation in IoT networks: Hovering and traveling time dilemma of UAVs,”IEEE Transactions on Wireless Communications, vol. 18, no. 10, pp. 4620–4635, 2019.

[28] C. Luo, M. N. Satpute, D. Li, Y. Wang, W. Chen, and W. Wu,“Fine-grained trajectory optimization of multiple UAVs for efficient data gathering from WSNs,”IEEE/ACM Transactions on Networking, vol. 29, no. 1, pp. 162–175, 2021.

[29] S. Alfattani, W. Jaafar, H. Yanikomeroglu, and A. Yongacoglu,“Multi-UAV data collection framework for wireless sensor networks,”in Proceedings of IEEE Global Communications Conference (GLOBECOM), pp. 1–6, 2019.

[30] Y. Wang, X. Wen, Z. Hu, Z. Lu, J. Miao, C. Sun, and H. Qi,“Multi-UAV collaborative data collection for IoT devices powered by battery,”in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6, 2020.

[31] J. Liu, P. Tong, X. Wang, B. Bai, and H. Dai,“UAV-aided data collection for information freshness in wireless sensor networks,”IEEE Transactions on Wireless Communications, vol. 20, no. 4, pp. 2368–2382, 2021.

[32] H. Hu, K. Xiong, G. Qu, Q. Ni, P. Fan, and K. B. Letaief,“AoI-minimal trajectory planning and data collection in UAV-assisted wireless powered IoT networks,”IEEE Internet of Things Journal, vol. 8, no. 2, pp. 1211–1223, 2021.

[33] Z. Jia, X. Qin, Z. Wang, and B. Liu,“Age-based path planning and data acquisition in UAV-assisted IoT networks,”in Proceedings of IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6, 2019.

[34] J.-S. Lin, H.-T. Chiu, and R.-H. Gau,“Decentralized planning-assisted deep reinforcement learning for collision and obstacle avoidance in UAV networks,”in Proceedings of IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), pp. 1–7, 2021.

[35] H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert,“UAV path planning for wireless data harvesting: A deep reinforcement learning approach,”in Proceedings of IEEE Global Communications Conference (GLOBECOM), pp. 1–6, 2020.

[36] O. Bouhamed, H. Ghazzai, H. Besbes, and Y. Massoud,“A UAV-assisted data collection for wireless sensor networks: Autonomous navigation and scheduling,”IEEE Access, vol. 8, pp. 110446–110460, 2020.

[37] C. Wang, J. Wang, Y. Shen, and X. Zhang,“Autonomous navigation of UAVs in large-scale complex environments: A deep reinforcement learning approach,”IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2124–2136, 2019.

[38] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. Cambridge, Mass: MIT Press, 3rd ed., 2009.

[39] G. Laporte,“The traveling salesman problem: An overview of exact and approximate algorithms,”European Journal of Operational Research, vol. 59, no. 2, pp. 231–247, 1992.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *