帳號:guest(3.145.12.181)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林 鈞
作者(外文):Lin, Chun
論文名稱(中文):枚舉最長共同遞增子序列之高效率演算法
論文名稱(外文):Efficient Algorithm for Enumerating Longest Common Increasing Subsequences
指導教授(中文):蔡明哲
指導教授(外文):TSAI, MING-JER
口試委員(中文):何宗易
郭桐惟
郭建志
口試委員(外文):HO, TSUNG-YI
KUO, TUNG-WEI
KUO, JIEN-JHIH
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:108062571
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:23
中文關鍵詞:最長共同遞增子序列字串樹資料結構
外文關鍵詞:LCISTrieData structure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:212
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
最長共同遞增子序列 (LCIS) 問題是兩個經典演算法問題的結合: 最長遞增子序列 (LIS) 問題以及最長共同子序列 (LCS) 問題. 在這邊論文中, 我們提出一個枚舉兩個長度為 n 的字串 a, b 之最長共同遞增子序列的演算法, 其時間及空間複雜度為 O(n+σ+Ia), 其中 σ 為字元集大小, Ia 為 a 的遞增子序列數量. 本演算法僅使用字串樹 (trie) 及少數簡單的資料結構, 有實作複雜性低的優勢, 以及在 σ=O(logn) 時, 可以被證明在時間及空間複雜度上是最佳的.
The longest common increasing subsequence (LCIS) problem is the combination of two classic problems in algorithms: the longest increasing subsequence (LIS) problem and the longest common subsequence (LCS) problem. In this paper, we propose an algorithm that finds every LCIS of two sequences a, b of length n in O(n+σ+Ia) time and space, where σ denotes the size of the alphabet set and Ia the total number of increasing subsequences contained in a. Our algorithm employs the trie and some simple data structures, and thus is implementation-wise simple. In addition, it can be proved that our algorithm is optimal in both time and space complexity when σ is O(logn).
[1] I.-H. Yang, C.-P. Huang, and K.-M. Chao, “A fast algorithm for computing a longestcommon increasing subsequence,”Information Processing Letters, vol. 93, pp. 249–253, Mar. 2005.
[2] W.-T. Chan, Y. Zhang, S. P. Y. Fung, D. Ye, and H. Zhu, “Efficient algorithms forfinding a longest common increasing subsequence,”Journal of Combinatorial Opti-mization, vol. 13, pp. 277–288, Dec. 2006.
[3] Y. Sakai, “A linear space algorithm for computing a longest common increasing sub-sequence,”Information Processing Letters, vol. 99, p. 203–207, Sep 2006.
[4] M. Kutz, G. S. Brodal, K. Kaligosi, and I. Katriel, “Faster algorithms for comput-ing longest common increasing subsequences,”Journal of Discrete Algorithms, vol. 9,pp. 314–325, Dec. 2011.
[5] D. Zhu, L. Wang, T. Wang, and X. Wang, “A simple linear space algorithm for com-puting a longest common increasing subsequence,”arXiv:1608.07002 [cs], Aug 2016.arXiv: 1608.07002.
[6] S.-F. Lo, K.-T. Tseng, C.-B. Yang, and K.-S. Huang, “A diagonal-based algorithm forthe longest common increasing subsequence problem,”Theoretical Computer Science,vol. 815, pp. 69–78, 2020.
[7] L. Duraj, “A sub-quadratic algorithm for the longest common increasing subsequenceproblem,”arXiv:1902.06864 [cs], Jan 2020. arXiv: 1902.06864
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *