|
[1] Arashloo, S. R., Kittler, J., and Christmas, W. An anomaly detection approach to face spoofing detection: A new formulation and evaluation protocol. IEEE access 5 (2017), 13868–13882. [2] Biometrics., I. J. S. Information technology–biometric presentation attack detection–part 3: testing and reporting. [3] Chingovska, I., Anjos, A., and Marcel, S. On the effectiveness of local binary patterns in face antispoofing. In 2012 BIOSIGproceedings of the interna tional conference of biometrics special interest group (BIOSIG) (2012), IEEE, pp. 1–7. [4] Da, K. A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014). [5] deFreitasPereira,T.,Komulainen,J.,Anjos,A.,DeMartino,J.M.,Hadid,A., Pietikäinen, M., and Marcel, S. Face liveness detection using dynamic texture. EURASIP Journal on Image and Video Processing 2014, 1 (2014), 2. [6] Feng, H., Hong, Z., Yue, H., Chen, Y., Wang, K., Han, J., Liu, J., and Ding, E. Learning generalized spoof cues for face antispoofing. arXiv preprint arXiv:2005.03922 (2020). [7] George, A., and Marcel, S. Deep pixelwise binary supervision for face pre sentation attack detection. In 2019 International Conference on Biometrics (ICB) (2019), IEEE, pp. 1–8. [8] Huang, X., Liu, M.Y., Belongie, S., and Kautz, J. Multimodal unsupervised imagetoimage translation. In Proceedings of the European conference on computer vision (ECCV) (2018), pp. 172–189. [9] Jourabloo, A., Liu, Y., and Liu, X. Face despoofing: Antispoofing via noise modeling. In Proceedings of the European Conference on Computer Vision (ECCV) (2018), pp. 290–306. [10] Kim, T., Kim, Y., Kim, I., and Kim, D. Basn: Enriching feature representation using bipartite auxiliary supervisions for face antispoofing. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019), pp. 0–0. [11] King, D. E. Dlibml: A machine learning toolkit. The Journal of Machine Learning Research 10 (2009), 1755–1758. [12] Kollreider, K., Fronthaler, H., Faraj, M. I., and Bigun, J. Realtime face de tection and motion analysis with application in “liveness”assessment. IEEE Transactions on Information Forensics and Security 2, 3 (2007), 548–558. [13] Komulainen, J., Hadid, A., and Pietikäinen, M. Context based face anti spoofing. In 2013 IEEE Sixth International Conference on Biometrics: The ory, Applications and Systems (BTAS) (2013), IEEE, pp. 1–8. [14] Lin, B., Li, X., Yu, Z., and Zhao, G. Face liveness detection by rppg features and contextual patchbased cnn. In Proceedings of the 2019 3rd International Conference on Biometric Engineering and Applications (2019), pp. 61–68. [15] Liu, S., Yang, B., Yuen, P. C., and Zhao, G. A 3d mask face antispoofing database with real world variations. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (2016), pp. 100–106. [16] Liu,S.Q.,Lan,X.,andYuen,P.C.Remotephotoplethysmographycorrespon dence feature for 3d mask face presentation attack detection. In Proceedings of the European Conference on Computer Vision (ECCV) (2018), pp. 558–573. [17] Liu, Y., Jourabloo, A., and Liu, X. Learning deep models for face anti spoofing: Binary or auxiliary supervision. In Proceedings of the IEEE confer ence on computer vision and pattern recognition (2018), pp. 389–398. [18] Liu, Y., Stehouwer, J., Jourabloo, A., and Liu, X. Deep tree learning for zero shot face antispoofing. In Proceedings of the IEEE/CVF Conference on Com puter Vision and Pattern Recognition (2019), pp. 4680–4689. [19] Liu,Y.,Stehouwer,J.,andLiu,X.Ondisentanglingspooftraceforgenericface antispoofing. In European Conference on Computer Vision (2020), Springer, pp. 406–422. [20] Määttä, J., Hadid, A., and Pietikäinen, M. Face spoofing detection from single images using microtexture analysis. In 2011 international joint conference on Biometrics (IJCB) (2011), IEEE, pp. 1–7. [21] Pan, G., Sun, L., Wu, Z., and Lao, S. Eyeblinkbased antispoofing in face recognition from a generic webcamera. In 2007 IEEE 11th International Con ference on Computer Vision (2007), IEEE, pp. 1–8. [22] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A. Automatic differentiation in pytorch. [23] Patel, K., Han, H., and Jain, A. K. Secure face unlock: Spoof detection on smartphones. IEEE transactions on information forensics and security 11, 10 (2016), 2268–2283. [24] Qin, Y., Zhao, C., Zhu, X., Wang, Z., Yu, Z., Fu, T., Zhou, F., Shi, J., and Lei, Z. Learning meta model for zeroand fewshot face antispoofing. In Proceedings of the AAAI Conference on Artificial Intelligence (2020), vol. 34, pp. 11916–11923. [25] Ronneberger, O., Fischer, P., and Brox, T. Unet: Convolutional networks for biomedical image segmentation. In International Conference on Medical im age computing and computerassisted intervention (2015), Springer, pp. 234– 241. [26] Van der Maaten, L., and Hinton, G. Visualizing data using tsne. Journal of machine learning research 9, 11 (2008). [27] Wang, G., Han, H., Shan, S., and Chen, X. Crossdomain face presentation attack detection via multidomain disentangled representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 6678–6687. [28] Wen, D., Han, H., and Jain, A. K. Face spoof detection with image distor tion analysis. IEEE Transactions on Information Forensics and Security 10, 4 (2015), 746–761. [29] Xiao, T., Hong, J., and Ma, J. Elegant: Exchanging latent encodings with gan for transferring multiple face attributes. In Proceedings of the European conference on computer vision (ECCV) (2018), pp. 168–184. [30] Xiong, F., and AbdAlmageed, W. Unknown presentation attack detection with face rgb images. In 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS) (2018), IEEE, pp. 1–9. [31] Yang, X., Luo, W., Bao, L., Gao, Y., Gong, D., Zheng, S., Li, Z., and Liu, W. Face antispoofing: Model matters, so does data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019), pp. 3507–3516. [32] Yu, Z., Li, X., Niu, X., Shi, J., and Zhao, G. Face antispoofing with hu man material perception. In European Conference on Computer Vision (2020), Springer, pp. 557–575. [33] Yu, Z., Qin, Y., Li, X., Wang, Z., Zhao, C., Lei, Z., and Zhao, G. Multi modal face antispoofing based on central difference networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2020), pp. 650–651. [34] Yu, Z., Wan, J., Qin, Y., Li, X., Li, S. Z., and Zhao, G. Nasfas: Static dynamic central difference network search for face antispoofing. arXiv preprint arXiv:2011.02062 (2020). [35] Zhang, K.Y., Yao, T., Zhang, J., Tai, Y., Ding, S., Li, J., Huang, F., Song, H., and Ma, L. Face antispoofing via disentangled representation learning. In European Conference on Computer Vision (2020), Springer, pp. 641–657. [36] Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., and Li, S. Z. A face antispoofing database with diverse attacks. In 2012 5th IAPR international conference on Biometrics (ICB) (2012), IEEE, pp. 26–31. [37] Zinelabidine, B., Jukka, K., Li, L., Feng, X., and Hadid, A. Oulunpu: a mobile face presentation attack database with realworld variations. In Proc. IEEE Int. Conf. on Identity, Security and Behavior Analysis, ISBA (2017), pp. 1–7. |