帳號:guest(18.226.214.95)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇熙珣
作者(外文):Su, Hsi-Hsun
論文名稱(中文):針對上行高可靠低延遲服務在多重使用者多輸入多輸出環境的免競爭配置授權排程方法
論文名稱(外文):Contention-Free Configured-Grant Scheduling for Uplink URLLC Services in MU-MIMO Systems
指導教授(中文):高榮駿
指導教授(外文):Kao, Jung-Chun
口試委員(中文):趙禧綠
楊舜仁
蕭旭峰
口試委員(外文):Chao, Hsi-Lu
Yang, Shun-Ren
Hsiao, Hsu-Feng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:108062534
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:61
中文關鍵詞:高可靠低延遲配置授權免競爭多重使用者多輸入多輸出逼零連續消除資源分配資源排程普洛克路斯忒斯分析
外文關鍵詞:URLLCConfigured-grantContention-freeMU-MIMOZF-SICResource allocationResource schedulingProcrustes analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:263
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為了提升行動通訊系統在上行方向的高可靠低延遲傳輸 (URLLC) 的系統容量,使用多重使用者多輸入多輸出 (MU-MIMO) 和免競爭 (contention-free) 配置授權 (configured grant) 技術能夠利用傳送端和接收端彼此的多根天線提升頻譜使用效率,並免去使用者因請求排程所花費的時間以及競爭造成的傳輸失敗可能性,且接收端使用了逼零連續消除 (ZF-SIC) 演算法來確保高可靠度,這篇論文中提出了在此架構下的多使用者訊號解碼順序、使用者分組和排程機制。

解碼順序考慮了 ZF-SIC 的運作原理,依照訊號雜訊比 (SNR) 的大小來決定順序從而強化了傳輸的可靠度。

分組機制的目標是使用最少的時頻資源就能滿足所有使用者的 URLLC 需求,因此每一組共用相同資源的使用者都要能發揮最大資源共享效益,我們使用矩陣表示多個使用者訊號並將每一組的挑選問題轉換成非等方性正交普洛克路斯忒斯分析 (anisotropic orthogonal Procrustes analysis, AOPA) 問題,此外還納入對解碼順序的考量設計了強化版的分組機制。

排程機制的目標則是盡可能將任一個使用者在最差情況下從出現傳輸需求到存取傳輸資源的時間間隔縮到最短。

模擬結果顯示我們提出的整套機制相較於現有的方法能夠大幅提升系統容量並大幅減少使用的資源量和傳輸延遲,並且是在確保所有使用者都滿足 URLLC 要求的前提下。
To improve the capacity and performance of mobile networks for envisioned ultra-reliable low-latency communication (URLLC) scenarios in the uplink direction, we propose a set of methods. To maximize the capacity of URLLC and achieve high spectral efficiency with reasonable decoding complexity, we focus on contention-free configured-grant transmission with multi-user multiple-input multiple-output (MU-MIMO) capability and zero-forcing successive interference cancellation (ZF-SIC) decoder. Each of our methods consists of three parts--decoding order determination, user grouping, and group scheduling. The decoding order is determined based on the signal to noise ratio (SNR) for reliability enhancement. The user grouping attempts to minimize the turnaround time by exploiting orthogonal Procrustes analysis (OPA) or anisotropic orthogonal Procrustes analysis (AOPA). The group scheduling greedily minimizes the response time. Simulation results validate that our methods outperform existing methods in terms of capacity, the number of resource units, and latency.
Abstract------------------------------------------- i
中文摘要------------------------------------------- ii
誌謝辭-------------------------------------------- iii
Contents ----------------------------------------- iv
List of Figures ---------------------------------- vii
1 Introduction ------------------------------------- 1
2 Preliminary -------------------------------------- 3
2.1 URLLC ------------------------------------------- 3
2.2 Latency components ------------------------------ 5
2.3 Configured-grant (CG) --------------------------- 7
3 Related Work ------------------------------------- 9
3.1 Contention-based CG scheduling ----------------- 10
3.2 Contention-free CG scheduling ------------------ 11
3.3 Improvement by multiplexing technologies ------- 12
4 System Model ------------------------------------ 13
4.1 Resource unit ---------------------------------- 14
4.2 Channel model ---------------------------------- 16
4.3 ZF-SIC ----------------------------------------- 17
4.4 Turnaround time and response time -------------- 20
5 Decoding Order ---------------------------------- 22
6 User Grouping ----------------------------------- 25
6.1 Select top users ------------------------------- 28
6.1.1 AOPA ------------------------------------------ 28
6.1.2 OPA ------------------------------------------- 29
6.2 Verification and effective rates calculation --- 30
6.3 Enhanced user selection ------------------------ 32
6.4 Complexity ------------------------------------- 35
7 Group Scheduling -------------------------------- 36
8 Performance Evaluation -------------------------- 41
8.1 Simulation settings ---------------------------- 41
8.2 Simulation results ----------------------------- 43
8.2.1 Number of resource units ---------------------- 44
8.2.2 Turnaround time ------------------------------- 46
8.2.3 Reliability satisfaction ---------------------- 47
8.2.4 Response time --------------------------------- 49
8.2.5 Throughput ------------------------------------ 51
9 Conclusion -------------------------------------- 53
A Inter-cell Interference ------------------------- 54
Reference ----------------------------------------- 55
[1] ITU-R, "Minimum requirements related to technical performance for IMT-2020 radio interface(s)," Radiocommunication Sector of ITU, Tech. Rep. M.2410-0, Nov. 2017.
[2] 3GPP, "Study on Scenarios and Requirements for Next Generation Access Technologies," 3rd Generation Partnership Project (3GPP), Technical Report (TR) 38.913, Jul. 2020, Version 16.0.0.
[3] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA); Study on latency reduction techniques for LTE," 3rd Generation Partnership Project (3GPP), Technical Report (TR) 36.881, Jun. 2016, Version 14.0.0.
[4] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description," 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 36.300, Mar. 2021, Version 16.5.0.
[5] 3GPP, "Study on New Radio Access Technology; Radio Interface Protocol Aspects," 3rd Generation Partnership Project (3GPP), Technical Report (TR) 38.804, Mar. 2017, Version 14.0.0.
[6] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures," 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 36.213, Mar. 2021, Version 16.5.0.
[7] 3GPP, "NR; Physical layer procedures for control," 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.213, Mar. 2020, Version 16.1.0.
[8] NTT DOCOMO, INC., "Uplink Multiple Access Schemes for NR," 3rd Generation Partnership Project (3GPP), document R1-165174, May 2016, TSGRAN WG1 Meeting #85.
[9] 3GPP, "NR; NR and NG-RAN Overall Description," 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.300, Mar. 2020, Version 16.1.0.
[10] S. P. Erik Dalhman and J. Skold, 5G NR: the next generation wireless access technology. Elsevier, Academic Press, 2021.
[11] C.Wang, Y. Chen, Y.Wu, and L. Zhang, "Performance Evaluation of Grant-Free Transmission for Uplink URLLC Services," in IEEE Vehicular Technology Conference (VTC-Spring), Sydney, NSW, Australia, Jun. 2017. doi: 10.1109/VTCSpring.2017.8108593.
[12] T. Jacobsen, R. Abreu, G. Berardinelli, K. Pedersen, P. Mogensen, I. Z. Kovacs, and T. K. Madsen, "System Level Analysis of Uplink Grant-Free Transmission for URLLC," in IEEE Globecom Workshops (GC Wkshps), Singapore, Dec. 2017. doi: 10.1109/GLOCOMW.2017.8269137.
[13] Nokia, Alcatel-Lucent Shanghai Bell, "Discussion on HARQ support for URLLC," 3rd Generation Partnership Project (3GPP), document R1-1612246, Nov. 2016, TSG-RAN WG1 Meeting #87.
[14] 3GPP, "NR; Physical layer procedures for data," 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.214, Mar. 2020, Version 16.1.0.
[15] Y. Liu, Y. Deng, M. Elkashlan, A. Nallanathan, and G. K. Karagiannidis, "Analyzing Grant-Free Access for URLLC Service," IEEE J. Sel. Areas Commun., vol. 39, no. 3, pp. 741{755, Aug. 2021. doi: 10.1109/JSAC.2020.3018822.
[16] A. A. Esswie and K. I. Pedersen, "Null Space Based Preemptive Scheduling for Joint URLLC and eMBB Traffic in Networks," in IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, Dec. 2018. doi: 10.1109/GLOCOMW.2018.8644351.
[17] A. Karimi, K. I. Pedersen, N. H. Mahmood, G. Pocovi, and P. Mogensen, "Efficient Low Complexity Packet Scheduling Algorithm for Mixed URLLC and eMBB Traffic in 5G," in IEEE Vehicular Technology Conference (VTC-Spring), Kuala Lumpur, Malaysia, Apr. 2019. doi: 10.1109/VTCSpring.2019.8746407.
[18] I. Gerasin, A. Krasilov, and E. Khorov, "Flexible Multiplexing of Grant-Free URLLC and eMBB in Uplink," in IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, Aug. 2020. doi: 10.1109/PIMRC48278.2020.9217168.
[19] R. Abreu, T. Jacobsen, K. Pedersen, G. Berardinelli, and P. Mogensen, "System Level Analysis of eMBB and Grant-Free URLLC Multiplexing in Uplink," in IEEE Vehicular Technology Conference (VTC-Spring), Kuala Lumpur, Malaysia, Jun. 2019. doi: 10.1109/VTCSpring.2019.8746557.
[20] N. H. Mahmood, R. Abreu, R. Bohnke, M. Schubert, G. Berardinelli, and T. H. Jacobsen, "Uplink Grant-Free Access Solutions for URLLC services in 5G New Radio," in International Symposium on Wireless Communication Systems (ISWCS), Oulu, Finland, Aug. 2019, pp. 607-612. doi: 10.1109/ ISWCS.2019.8877253.
[21] T. N. Weerasinghe, I. A. Balapuwaduge, and F. Y. Li, "Priority-based initial access for URLLC tra_c in massive IoT networks: Schemes and performance analysis," Computer Networks, vol. 178, p. 107 360, Sep. 2020, issn: 1389-1286. doi: https://doi.org/10.1016/j.comnet.2020.107360. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1389128619317967.
[22] C.-H. Wei, G. Bianchi, and R.-G. Cheng, "Modeling and Analysis of Random Access Channels With Bursty Arrivals in OFDMA Wireless Networks," IEEE Trans. Wireless Commun., vol. 14, no. 4, pp. 1940{1953, Dec. 2015. doi: 10.1109/TWC.2014.2377121.
[23] T. N.Weerasinghe, I. A. M. Balapuwaduge, and F. Y. Li, "Supervised Learning based Arrival Prediction and Dynamic Preamble Allocation for Bursty Traffic," in IEEE Conference on Computer Communications Workshops (IN-FOCOM Wkshps), Paris, France, Apr. 2019.
[24] M. B. Shahab, R. Abbas, M. Shirvanimoghaddam, and S. J. Johnson, "Grant-Free Non-Orthogonal Multiple Access for IoT: A Survey," IEEE Commun. Surveys Tuts., vol. 22, no. 3, pp. 1805–1838, May 2020. doi: 10 . 1109 / COMST.2020.2996032.
[25] J. Ding, M. Nemati, S. Pokhrel, O.-S. Park, J. Choi, and F. Adachi, "Enabling Grant-Free URLLC: An Overview of Principle and Enhancements by Massive MIMO," 2021, https://doi.org/10.36227/techrxiv.14498505.v1.
[26] 3GPP, "NR; Physical channels and modulation," 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.211, Sep. 2020, Version 16.3.0.
[27] 3GPP, "Physical channels and modulation," 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 36.211, Sep. 2020, Version 16.3.0.
[28] 3GPP, "Study on New Radio (NR) access technology," 3rd Generation Partnership Project (3GPP), Technical Report (TR) 38.912, Jul. 2020, Version 16.0.0. [29] E. C. Kim, J. S. Park, and J. Y. Kim, "Co-channel interference cancellation based on ZF/MMSE SIC with optimal ordering for cooperative communication systems," in International Symposium on Communications and Information Technology, Icheon, Korea (South), Sep. 2009, pp. 404–409. doi: 10.1109/ISCIT.2009.5341217.
[30] S.-H. Cheng, C.-H. Hung, and J.-C. Kao, "User Selection and Decoding Precedence Based on the Anisotropic Orthogonal Procrustes Analysis for Uplink Multi-User MIMO," in IEEE Vehicular Technology Conference (VTCFall), Toronto, ON, Canada, Sep. 2017. doi: 10.1109/ VTCFall.2017.8287989.
[31] V. V. Vazirani, Approximation Algorithms. Springer-Verlag, 2001.
[32] A. Zaidi, F. Athley, J. Medbo, U. Gustavsson, G. Durisi, and X. Chen, 5G Physical Layer: principles, models and technology components. Academic Press, 2018.
[33] ITU-R, "Guidelines for evaluation of radio interface technologies for IMT2020," Radiocommunication Sector of ITU, Tech. Rep. M.2412-0, Nov. 2017.
[34] S. E. Elayoubi, P. Brown, M. Deghel, and A. Galindo-Serrano, "Radio Resource Allocation and Retransmission Schemes for URLLC Over 5G Networks," IEEE J. Sel. Areas Commun., vol. 37, no. 4, pp. 896–904, Feb. 2019. doi: 10.1109/JSAC.2019.2898783.
[35] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) requirements for LTE Pico Node B," 3rd Generation Partnership Project (3GPP), Technical Report (TR) 36.931, Dec. 2009, Version 9.0.0.
[36] R. Kovalchukov, D. Moltchanov, Y. Gaidamaka, and E. Bobrikova, "An Accurate Approximation of Resource Request Distributions in Millimeter Wave 3GPP New Radio Systems," in Internet of Things, Smart Spaces, and Next Generation Networks and Systems, St. Petersburg, Russia: Springer International Publishing, Aug. 2019, pp. 572–585, isbn: 978-3-030-30859-9.
[37] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA) Medium Access Control (MAC) protocol specification," 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 36.321, Dec. 2008, Version 8.4.0.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *