帳號:guest(3.147.60.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李宗翰
作者(外文):Lee, Chung-Han
論文名稱(中文):抗類比運算噪聲之魯棒二值化神經網路
論文名稱(外文):Robust Binary Neural Network against Noisy Analog Computation
指導教授(中文):張世杰
指導教授(外文):Chang, Shih-Chieh
口試委員(中文):陳添福
王俊堯
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:108062531
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:28
中文關鍵詞:深層神經網路類比人工智慧噪聲容忍
外文關鍵詞:Deep neural networksAnalog AINoise tolerance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:151
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
記憶體內運算(CIM)在近幾年展現了大幅降低人工智慧運算成本的潛力。另一方面,二值化神經網路也有著加速以及降低功耗的優勢。本篇碩士論文提出了一種適用於CIM框架的穩健二值化神經網路。由於在CIM框架中使用了大量的類比運算,在運算中會產生難以避免的類比噪聲,使得神經網路的表現下降。首先,我們觀察到,傳統的批標準化會加強類比噪聲的影響。我們接著提出一種新的二值化神經網路訓練方法,取代批標準化的同時保持批標準化的優點。再者,在二值化神經網路中,當卷積運算的輸入值為0時,噪聲對當運算不會產生影響。我們進一步地提出方法來提高輸入值為0的比例來提高網路的穩健性。將我們提出的模型應用在關鍵詞辨識任務上取得了相當顯著的進步。
Computing in memory (CIM) technology has shown promising results in reducing the energy consumption for a battery-powered device. On the other hand, to reduce MAC operations, Binary neural networks (BNN) shows the potential to catch up with a full-precision model. This thesis attempts to propose a robust BNN model applied on the CIM framework, which can tolerate analog noises. These analog noises caused by various kinds of variations such as process variation, can lead to low inference accuracy. We first observe that traditional batch normalization can cause a BNN model to be susceptible analog noise. We then propose a new approach to replace the batch normalization while maintaining the advantages of the batch normalization. Secondly, in BNN, since noises can be removed when inputs are zeros during the MAC operation, we also propose novel methods to increase the number of zeros in a convolution outputs. We apply our new BNN model in the keyword spotting application. Our results are very exciting.
Chapter1 Introduction 1
Chapter1.1 Introduction 1
Chapter2 Related Work 5
Chapter2.1 Related Work 5
Chapter2.1.1 Improving performance under noisy computation 5
Chapter2.1.2 Batch Normalization 6
Chapter3 Preliminary 7
Chapter3.1 Preliminary 7
Chapter3.1.1 Binary Neural Network 7
Chapter3.1.2 Analog Noise Model 8
Chapter4 Methodologies 10
Chapter4.1 Methodologies 10
Chapter4.1.1 Batchnorm-free BNN 10
Chapter4.1.2 Reduce involved noise 12
Chapter5 Experiments 17
Chapter5.1 Experiments 17
Chapter5.1.1 Settings 17
Chapter5.1.2 Experimental results 19
Chapter6 Conclusions 23
Reference 24
[1] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu. Convolutional neural networks for speech recognition.IEEE/ACM Transactions on Audio,Speech, and Language Processing, 22(10):1533–1545, 2014.
[2] Y. Bengio, N. L ́eonard, and A. Courville.Estimating or propagating gradi-ents through stochastic neurons for conditional computation.arXiv preprintarXiv:1308.3432, 2013.
[3] A. Brock, S. De, and S. L. Smith. Characterizing signal propagation to close theperformance gap in unnormalized resnets. InInternational Conference on LearningRepresentations, 2020.
[4] L. Chang, X. Ma, Z. Wang, Y. Zhang, W. Zhao, and Y. Xie. Corn: In-buffer com-puting for binary neural network. In2019 Design, Automation Test in Europe Con-ference Exhibition (DATE), pages 384–389, 2019.
[5] Y.-C. Chiu, Z. Zhang, J.-J. Chen, X. Si, R. Liu, Y.-N. Tu, J.-W. Su, W.-H. Huang,J.-H. Wang, W.-C. Wei, J.-M. Hung, S.-S. Sheu, S.-H. Li, C.-I. Wu, R.-S. Liu, C.-C.Hsieh, K.-T. Tang, and M.-F. Chang. A 4-kb 1-to-8-bit configurable 6t sram-basedcomputation-in-memory unit-macro for cnn-based ai edge processors.IEEE Journalof Solid-State Circuits, 55(10):2790–2801, 2020.
[6] S. Choi, S. Seo, B. Shin, H. Byun, M. Kersner, B. Kim, D. Kim, and S. Ha. Tem-poral convolution for real-time keyword spotting on mobile devices.arXiv preprintarXiv:1904.03814, 2019.
[7] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neuralnetworks: Training deep neural networks with weights and activations constrainedto+ 1 or-1.arXiv preprint arXiv:1602.02830, 2016.
[8] L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao. Normalization tech-niques in training dnns: Methodology, analysis and application.arXiv preprintarXiv:2009.12836, 2020.
[9] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quantized neuralnetworks: Training neural networks with low precision weights and activations.TheJournal of Machine Learning Research, 18(1):6869–6898, 2017.
[10] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training byreducing internal covariate shift. InInternational conference on machine learning,pages 448–456. PMLR, 2015.
[11] V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S. R. Nandakumar, C. Piveteau,M. Dazzi, B. Rajendran, A. Sebastian, and E. Eleftheriou. Accurate deep neuralnetwork inference using computational phase-change memory.Nature communica-tions, 11(1):1–13, 2020.[12] M. Klachko, M. R. Mahmoodi, and D. Strukov. Improving noise tolerance of mixed-signal neural networks. In2019 International Joint Conference on Neural Networks(IJCNN), pages 1–8. IEEE, 2019.
[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deepconvolutional neural networks.Advances in neural information processing systems,25:1097–1105, 2012.
[14] M. M. Lopez and J. Kalita.Deep learning applied to nlp.arXiv preprintarXiv:1703.03091, 2017.
[15] S. Mittermaier, L. K ̈urzinger, B. Waschneck, and G. Rigoll. Small-footprint keywordspotting on raw audio data with sinc-convolutions. InICASSP 2020-2020 IEEEInternational Conference on Acoustics, Speech and Signal Processing (ICASSP),pages 7454–7458. IEEE, 2020.
[16] S. Qiao, H. Wang, C. Liu, W. Shen, and A. Yuille.Micro-batch trainingwith batch-channel normalization and weight standardization.arXiv preprintarXiv:1903.10520, 2019.
[17] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe. Binary neural networks: Asurvey.Pattern Recognition, 105:107281, 2020.
[18] M. Qin and D. Vucinic. Training recurrent neural networks against noisy computa-tions during inference. In2018 52nd Asilomar Conference on Signals, Systems, andComputers, pages 71–75. IEEE, 2018.[19] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun. Unsupervised learning ofinvariant feature hierarchies with applications to object recognition. In2007 IEEEConference on Computer Vision and Pattern Recognition, pages 1–8, 2007.
[20] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet clas-sification using binary convolutional neural networks. InEuropean conference oncomputer vision, pages 525–542. Springer, 2016.
[21] M. Ravanelli and Y. Bengio. Speaker recognition from raw waveform with sincnet.In2018 IEEE Spoken Language Technology Workshop (SLT), pages 1021–1028.IEEE, 2018.[22] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scaleimage recognition.arXiv preprint arXiv:1409.1556, 2014.
[23] R. Tang and J. Lin. Deep residual learning for small-footprint keyword spotting. In2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5484–5488. IEEE, 2018.
(ICASSP), pages 5484–5488. IEEE, 2018.
[24] S. Ward-Foxton. Mythic ai accelerator targets high-end edge with 35 tops, Nov2020.
[25] P. Warden. Speech commands: A dataset for limited-vocabulary speech recognition.arXiv preprint arXiv:1804.03209, 2018.
[26] T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep learn-ing based natural language processing.ieee Computational intelligenCe magazine,13(3):55–75, 2018.
[27] J. Zhang, Z. Wang, and N. Verma. In-memory computation of a machine-learningclassifier in a standard 6t sram array.IEEE Journal of Solid-State Circuits,52(4):915–924, 2017.
[28] Y. Zhang, N. Suda, L. Lai, and V. Chandra. Hello edge: Keyword spotting onmicrocontrollers.arXiv preprint arXiv:1711.07128, 2017.
[29] C. Zhou, P. Kadambi, M. Mattina, and P. N. Whatmough. Noisy machines: Under-standing noisy neural networks and enhancing robustness to analog hardware errorsusing distillation.arXiv preprint arXiv:2001.04974, 2020.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *