|
[1] Xu, H., Stetson, P. D., & Friedman, C. (2007). A study of abbreviations in clinical notes. In AMIA annual symposium proceedings (Vol. 2007, p. 821). American Medical Informatics Association. [2] Bodenreider, O. (2004). The unified medical language system (UMLS): in-tegrating biomedical terminology. Nucleic acids research, 32(suppl 1), D267- D270. [3] Liu, H., Lussier, Y. A., & Friedman, C. (2001). A study of abbreviations in the UMLS. In Proceedings of the AMIA Symposium (p. 393). American Medical Informatics Association. [4] McInnes, B. T., Pedersen, T., & Carlis, J. (2007). Using UMLS Concept Unique Identifiers (CUIs) for word sense disambiguation in the biomedical domain. In AMIA annual symposium proceedings (Vol. 2007, p. 533). American Medical Informatics Association. [5] Leroy, G., & Rindflesch, T. C. (2005). Effects of information and machine learn- ing algorithms on word sense disambiguation with small datasets. International Journal of Medical Informatics, 74(7-8), 573-585. [6] Joshi, M., Pakhomov, S., Pedersen, T., & Chute, C. G. (2006). A comparative study of supervised learning as applied to acronym expansion in clinical reports. In AMIA annual symposium proceedings (Vol. 2006, p. 399). American Medical Informatics Association. [7] Xu, H., Markatou, M., Dimova, R., Liu, H., & Friedman, C. (2006). Machine learning and word sense disambiguation in the biomedical domain: design and evaluation issues. BMC bioinformatics, 7(1), 1-16. [8] Yu, H., Kim, W., Hatzivassiloglou, V., & Wilbur, J. (2006). A large scale, corpus-based approach for automatically disambiguating biomedical abbreviations. ACM Transactions on Information Systems (TOIS), 24(3), 380-404. [9] Stevenson, M., Guo, Y., Alamri, A., & Gaizauskas, R. (2009, June). Disambiguation of biomedical abbreviations. In Proceedings of the BioNLP 2009 Workshop (pp. 71-79). [10] Kim, Y., Hurdle, J., & Meystre, S. M. (2011). Using UMLS lexical resources to disambiguate abbreviations in clinical text. In AMIA Annual Symposium Proceedings (Vol. 2011, p. 715). American Medical Informatics Association. [11] Moon, S., Pakhomov, S., & Melton, G. B. (2012). Automated disambiguation of acronyms and abbreviations in clinical texts: window and training size considerations. In AMIA annual symposium proceedings (Vol. 2012, p. 1310). American Medical Informatics Association. [12] Wu, Y., Xu, J., Zhang, Y., & Xu, H. (2015, July). Clinical abbreviation disambiguation using neural word embeddings. In Proceedings of BioNLP 15 (pp. 171-176). [13] Li, C., Ji, L., & Yan, J. (2015, March). Acronym disambiguation using word embedding. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 29, No. 1). [14] Finley, G. P., Pakhomov, S. V., McEwan, R., & Melton, G. B. (2016). Towards comprehensive clinical abbreviation disambiguation using machine- labeled training data. In AMIA Annual Symposium Proceedings (Vol. 2016, p. 560). American Medical Informatics Association. [15] Wang, Y., Zheng, K., Xu, H., & Mei, Q. (2016). Clinical word sense disambiguation with interactive search and classification. In AMIA Annual Symposium Proceedings (Vol. 2016, p. 2062). American Medical Informatics Association. [16] Joopudi, V., Dandala, B., & Devarakonda, M. (2018). A convolutional route to abbreviation disambiguation in clinical text. Journal of biomedical informatics, 86, 71-78. [17] Jaber, Areej and Mart ́ınez, P. (2021). Disambiguating Clinical Abbreviations using Pre-trained Word Embeddings. In Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5 HEALTHINF: HEALTHINF, ISBN 978-989-758-490-9, pages 501-508. DOI: 10.5220/0010256105010508 [18] K ̊ageb ̈ack, M., & Salomonsson, H. (2016). Word sense disambiguation using a bidirectional lstm. arXiv preprint arXiv:1606.03568. [19] Jin, Q., Liu, J., & Lu, X. (2019). Deep Contextualized Biomedical Abbreviation Expansion. arXiv preprint arXiv:1906.03360. [20] Li, I., Yasunaga, M., Nuzumlalı, M. Y., Caraballo, C., Mahajan, S., Krumholz, H., & Radev, D. (2019). A neural topic-attention model for medical term abbreviation disambiguation. arXiv preprint arXiv:1910.14076. [21] Skreta, M., Arbabi, A., Wang, J., & Brudno, M. (2020, April). Training without training data: Improving the generalizability of automated medical abbreviation disambiguation. In Machine Learning for Health Workshop (pp. 233-245). PMLR. [22] Wen, Z., Lu, X. H., & Reddy, S. (2020). MeDAL: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining. arXiv preprint arXiv:2012.13978. [23] Xu, H., Stetson, P. D., & Friedman, C. (2012). Combining corpus-derived sense profiles with estimated frequency information to disambiguate clinical abbreviations. In AMIA annual symposium proceedings (Vol. 2012, p. 1004). American Medical Informatics Association. [24] Wu, Y., Denny, J. C., Trent Rosenbloom, S., Miller, R. A., Giuse, D. A., Wang, L., ... & Xu, H. (2017). A long journey to short abbreviations: developing an open-source framework for clinical abbreviation recognition and disambiguation (CARD). Journal of the American Medical Informatics Association, 24(e1), e79-e86. [25] Charbonnier, J., & Wartena, C. (2018). Using word embeddings for unsupervised acronym disambiguation. [26] Ciosici, M., Sommer, T., & Assent, I. (2019). Unsupervised Abbreviation Disambiguation Contextual disambiguation using word embeddings. arXiv preprint arXiv:1904.00929. [27] Berster, B. T., Goodwin, J. C., & Cohen, T. (2012). Hyperdimensional computing approach to word sense disambiguation. In AMIA Annual Symposium Proceedings (Vol. 2012, p. 1129). American Medical Informatics Association. [28] Moon, S., Berster, B. T., Xu, H., & Cohen, T. (2013). Word sense disambiguation of clinical abbreviations with hyperdimensional computing. In AMIA annual symposium proceedings (Vol. 2013, p. 1007). American Medical Informatics Association. [29] Limsopatham, N., Santos, R. L., Macdonald, C., & Ounis, I. (2011, July). Disambiguating biomedical acronyms using EMIM. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval (pp. 1213-1214). [30] Sabbir, A. K. M., Jimeno-Yepes, A., & Kavuluru, R. (2017, October). Knowledge-based biomedical word sense disambiguation with neural concept embeddings. In 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 163-170). IEEE. [31] Liu, Y., Ge, T., Mathews, K. S., Ji, H., & McGuinness, D. L. (2018). Exploiting task-oriented resources to learn word embeddings for clinical abbreviation expansion. arXiv preprint arXiv:1804.04225. [32] Aronson, A. R. (2001). Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In Proceedings of the AMIA Symposium (p. 17). American Medical Informatics Association. [33] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint arXiv:1802.05365. [34] Moon, Sungrim; Pakhomov, Serguei; Melton, Genevieve. (2012). Clinical Abbreviation Sense Inventory. Retrieved from the University of Minnesota Digital Conservancy, https://hdl.handle.net/11299/137703. [35] Moon, S., Pakhomov, S., Liu, N., Ryan, J. O., & Melton, G. B. (2014). A sense inventory for clinical abbreviations and acronyms created using clinical notes and medical dictionary resources. Journal of the American Medical Informatics Association, 21(2), 299-307. [36] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830. [37] Zhang, Y., Chen, Q., Yang, Z., Lin, H., & Lu, Z. (2019). BioWordVec, improving biomedical word embeddings with subword information and MeSH. Scientific data, 6(1), 1-9. [38] Soldaini, L., & Goharian, N. (2016, July). Quickumls: a fast, unsupervised approach for medical concept extraction. In MedIR workshop, sigir (pp. 1-4). [39] Honnibal, M., & Montani, I. (2017). spaCy 2: Natural language understand- ing with Bloom embeddings, convolutional neural networks and incremental parsing. To appear, 7(1), 411-420. [40] Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5, 135-146. [41] White, L., Togneri, R., Liu, W., & Bennamoun, M. (2015, December). How well sentence embeddings capture meaning. In Proceedings of the 20th Australasian document computing symposium (pp. 1-8). |