|
[1] B. Goll, et al., Comparators in Nanometer CMOS Technology, Berlin, Germany: Springer, 2015. [2] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Liu, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. solid-state circuit, vol.45, no.4, pp.731-740, April 2010. [3] Tertulien Ndjountche, CMOS Analog Integrated Circuits High-speed and Power-efficient Design, New York, CRC Press, 2011. [4] T. Kobayashi et al., ‘‘A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture,’’ IEEE J. Solid-State Circuits, vol. 28, no. 4, pp. 523–527, April 1993. [5] B. Wicht et al., “Yield and speed optimization of a latch-type voltage sense amplifier,”IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1148-1158, Jul. 2004. [6] P. Nuzzo, et al., “Noise analysis of regenerative comparators for reconfigurable ADC architectures,” IEEE Trans. Circuits and Syst. I, vol. 55, no. 6, pp. 1441–1454, Jun. 2008. [7] Asad Abidi et al., “Understanding the regenerative comparator circuit,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2014, pp. 1–8. [8] T. Ogawa et al., “SAR ADC algorithm with redundancy,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Nov. 2008, pp. 268–271. [9] W. Liu et al., “A 12b 22.5/45MS/s 3.0mW 0.059 mm2 CMOS SAR ADC achieving over 90 dB SFDR,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2010, pp. 380−381. [10] W. Liu et al., “A 12-bit 50-MS/s 3.3mW SAR ADC with background digital calibration,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2012. [11] Albert. H. Chang et al., “A 12b 50MS/s 2.1mW SAR ADC with redundancy and digital background calibration” in Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), 2013, pp. 109–112. [12] Chun-Cheng Liu, Che-Hsun Kuo, and Ying-Zu Lin, A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20 nm CMOS [13] C.-k. Lee, W. Kim, H. Kang, and S.-T. Ryu, “A replica-driving technique for high performance SC circuits and pipelined ADC design,” IEEE Trans. Circuits Syst. II, vol. 60, no. 9, pp. 557–561, Sep. 2013. [14] R. Vitek, et al., “A 0.015 mm2 63fJ/conversion-step 10-bit 220MS/s SAR ADC with 1.5 b/step redundancy and digital metastability correction,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2012, pp.1–4. [15] Design of a Reference Voltage Buffer for a 10-bit 50 MS/s SAR ADC in 65 nm CMOS [16] F.Kuttner et al., “A 1.2-V 10-b 20-Msample/s nonbinary successive approximation ADC in 0.13-µm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2002, pp. 176−177. [17] S.-W. M. Chen et al., “A 6-bit 600-MS/s 5.3mW asynchronous ADC in 0.13 µm CMOS,” [18] T. Ogawa et al., “Non-binary SAR ADC with digital error correction for low power applications,”in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Dec. 2010, pp. 196-199. [19] H.-Y. Tai et al., “A 3.2fJ/c.-s. 0.35 V 10 b 100 kS/s SAR ADC in 90 nm CMOS,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, Jun. 2012, pp. 92–93. [20] Toru Okazaki, et al., “A Design Technique for a High-speed SAR ADC Using Non-binary Search Algorithm and Redundancy,”in Proc. IEEE Asia Pacific Microwave Conf. (APMC), Dec. 2013, pp. 506-508. [21] Hyeok-Ki Hong et al., “A 7b 1GS/s 7.2mW nonbinary 2b/cycle SAR ADC with register-to-DAC direct control,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2012, pp. 1−4. [22] Guan-Ying Huang, et al “A 10-bit 200MS/s 0.82mW SAR ADC in 40-nm CMOS,” A-SSCC, p. 289(2013). [23] Hanie Ghaedrahmati, and Jianjun Zhou "160 MS/s 20MHz bandwidth third-order noise shaping SAR ADC," Electronic Letters, p128(2018) [24] Prakash Harikumar and J Jacob Wikner, "Design of a reference voltage buffer for a 10-bit 50MS/s SAR ADC in 65nm CMOS," ISCAS, p. 249 (2015). [25] M. Dessouky and A. Kaiser, “Input switch configuration for rail-to-rail operation of switched opamp circuits,” Electronic Letter, vol. 35, pp. 8–10, Jan. 1999. [26] B. Razavi, Design of Analog CMOS Integrated Circuits, International ed., Boston: McGraw-Hill, 2010. [27] M. Shinagawa, Y. Akazawa, and T. Wakimoto, “Jitter Analysis of High-Speed Sampling Systems,” IEEE Journal of Solid-State Circuits, vol. 25, no. 1, pp. 220-224, 1990. [28] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl and B. Nauta, "A Double-Tail Latch-Type Voltage Sense Amplifier with 18ps Setup+Hold Time," 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, 2007, pp. 314-605.102 [29] A. M. Abo and P. R. Gray, "A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter," in IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 599-606, May 1999. [30] G. Huang and P. Lin, "A fast bootstrapped switch for high-speed high-resolution A/D converter," 2010 IEEE Asia Pacific Conference on Circuits and Systems, Kuala Lumpur, 2010, pp. 382-385. [31] H. Chen, L. He, H. Deng, Y. Yin and F. Lin, "A high-performance bootstrap switch for low voltage switched-capacitor circuits," 2014 IEEE International Symposium on Radio-Frequency Integration Technology, Hefei, 2014, pp. 1-3. [32] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink and B. Nauta, "A 10-bit Charge-Redistribution ADC Consuming 1.9uW at 1 MS/s," in IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1007-1015, May 2010. [33] Kobayashi, Tsuguo, et al. "A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture." IEICE transactions on electronics 76.5 (1993): 863-867. [34] P. M. Figueiredo and J. C. Vital, "Kickback noise reduction techniques for CMOS latched comparators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7, pp. 541-545, July 2006, doi: 10.1109/TCSII.2006.875308. [35] M. v. Elzakker, E. v. Tuijl, P. Geraedts, D. Schinkel, E. Klumperink, and B. Nauta, “A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC,” IEEE ISSCC Dig. Tech. Papers, February, 2008, pp. 244-245.102
|