帳號:guest(18.191.233.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李亞承
作者(外文):Li, Ya-Cheng
論文名稱(中文):使用空時區塊編碼與相位旋轉共軛消除技術之基於離散哈特利轉換的濾波器組多載波系統
論文名稱(外文):A DHT-Based Filter Bank Multicarrier System Using Space-Time Block Coding and Phase-Rotated Conjugate Cancellation
指導教授(中文):王晉良
指導教授(外文):Wang, Chin-Liang
口試委員(中文):鐘嘉德
馮世邁
歐陽源
口試委員(外文):Chung, Char-Dir
Phoong, See-May
Ouyang, Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:108061612
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:38
中文關鍵詞:空時區塊編碼相位旋轉共軛消除離散哈特利轉換濾波器組多載波載波頻率偏差載波間干擾
外文關鍵詞:space-time block codingphase-rotated conjugate cancellationdiscrete Hartley transformfilter bank multicarriercarrier frequency offsetintercarrier interference
相關次數:
  • 推薦推薦:0
  • 點閱點閱:49
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本論文中,我們提出一種2x2多天線系統之基於離散哈特利轉換 (discrete Hartley transform;DHT)、Alamouti 空時區塊編碼 (STBC) 和一種使用時分複用兩路傳輸的相位旋轉共軛消除技術 (phase-rotated conjugate cancellation [PRCC])的濾波器組多載波 (FBMC) 系統。在這系統中,分別在傳送端及接收端使用DHT來進行多載波調變及多載波解調,且在兩個鏡像對稱子載波之間存在一些不同的頻率分集。Alamouti STBC的使用是為了獲得空時分集,而PRCC的使用則額外提供了時間分集用以消除載波頻率偏移(carrier frequency offset [CFO])引起的載波間干擾,其中導出了最佳相位旋轉以最大化載波干擾比率。在多天線 DHT-FBMC系統中,為了利用所有的分級增益,在接收端,一種結合基於最小均方誤差之STBC等化器/解碼器、PRCC equalizer (分別給兩條路徑)以及一個分集結合器被發展出來還原傳輸的訊號。模擬結果顯示,所提出的使用STBC及PRCC的DHT-FBMC系統,相較於使用STBC而未使用PRCC的DHT-FBMC系統有更好的位元錯誤率。
In this thesis, we propose a 2x2 multiple-input multiple-output (MIMO) filter bank multicarrier (FBMC) system based on the discrete Hartley transform (DHT), Alamouti space-time block coding (STBC), and phase-rotated conjugate cancellation (PRCC) using two-path transmission in a time-division multiplexing manner. In this system, the DHT is employed for multicarrier modulation at the transmitter and for multicarrier demodulation at the receiver, and there is some distinct frequency diversity between any two mirror-symmetrical subcarriers. The use of Alamouti STBC is to have space-time diversity, while the use of PRCC provides additional time diversity to mitigate intercarrier interference due to carrier frequency offsets (CFOs), where the optimal phase rotation is derived to maximize the carrier-to-interference ratio. To exploit all the diversity gains in such a MIMO DHT-FBMC system, an STBC equalizer/decoder, two PRCC equalizers (one for each of the two paths), and a diversity combiner are designed to recover the transmitted data based on the minimum mean-squared error criterion at the receiver. Computer simulation results demonstrate that the proposed DHT-FBMC system using STBC and PRCC achieves much better bit-error-rate performance than the related DHT-FBMC system using STBC but no PRCC.
Abstract i
Contents ii
List of Figures iii
List of Tables iv
I. Introduction 1
II. System Model 4
A. The DHT-FBMC System 4
B. DHT-Based FBMC System with Two Prototype Using STBC with CFO 10
C. DHT-FBMC Using STBC and Phase Rotated Conjugate Cancellation 15
III. The CIR and Optimal Phase Rotation 23
IV. Simulation Results 26
V. Conclusion 33
References 34

[1] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Norwood, MA: Artech House, 2000.
[2] Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description, 3GPP TS 36.300 V10.10.0, Jul. 2013.
[3] 5G; NR; Multiplexing and Channel Coding; Tech. Spec., 3GPP TS 38.212 V15.2.0, Jul. 2018.
[4] R. Haas and J.-C. Belfiore, “A time-frequency A QAM-FBMC space-time block code well-localized pulse for multiple carrier transmission,” Wireless Pers. Commun., vol. 5, no. 1, pp. 1–18.
[5] P. Siohan and C. Roche, “Cosine-modulated filterbanks based on extended Gaussian functions,” IEEE Trans. Signal Process., vol. 48, no. 11, pp. 3052–3061, Nov. 2000.
[6] P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1170–1183, May 2002.
[7] J. Du and S. Signell, “Time frequency localization of pulse shaping filters in OFDM/OQAM systems,” in Proc. Int. Conf. Inf., Commun. Signal Process., Singapore, Dec. 2007, pp. 1–5.
[8] A. Viholaninen, M. Bellanger, and M. Huchard, “PHYDYAS–Physical layer for dynamic access and cognitive radio,” Tech. Rep. D5.1, EU FP7-ICT Future Networks, Jan. 2009. Project website: http//www.ict-phydyas.org/.
[9] B. F. Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process. Mag., vol. 28, no. 3, pp. 92–112, May 2011.
[10] L. Zhang, P. Xiao, A. Zafar, A. Quddus, and R. Tafazolli, “FBMC system: An insight into doubly dispersive channel impact,” IEEE Trans. Veh. Technol., vol. 66, no. 5, pp. 3942–3956, May 2017.
[11] R. Zakaria and D. Le Ruyet, “A novel filter-bank multicarrier scheme to mitigate the intrinsic interference: Application to MIMO systems,” IEEE Trans. Wireless Commun., vol. 11, no. 3, pp. 1112–1123, Mar. 2012.
[12] P. Chevalier, D. Le Ruyet, and R. Chauvat, “Maximum likelihood Alamouti receiver for filter bank based multicarrier transmissions,” in Proc. 20th Int. ITG Workshop Smart Antennas, Munich, Germany, Mar. 2016, pp. 210–216.
[13] X. Mestre and D. Gregoratti, “Parallelized structures for MIMO FBMC under strong channel frequency selectivity,” IEEE Trans. Signal Process., vol. 64, no. 5, pp. 1200–1215, Mar. 2016.
[14] F. Rottenberg, X. Mestre, F. Horlin, and J. Louveaux, “Single-tap precoders and decoders for multiuser MIMO FBMC-OQAM under strong channel frequency selectivity,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 587–600, Feb. 2017.
[15] H. Nam, M. Choi, C. Kim, D. Hong, and S. Choi, “A new filter-bank multicarrier system for QAM signal transmission and reception,” in Proc. IEEE Int. Conf. Commun. (ICC), Sydney, Australia, Jun. 2014, pp. 5227–5232.
[16] Y. H. Yun, C. Kim, K. Kim, Z. Ho, B. Lee, and J.-Y. Seol, “A new waveform enabling enhanced QAM-FBMC systems,” in Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Stockholm, Sweden, Jun. 2015, pp. 116–120.
[17] Z. Ho, K. Kim, C. Kim, Y. H. Yun, Y.-H. Cho, and J.-Y. Seol, “A QAM-FBMC space-time block code system with linear equalizers,” in Proc. IEEE Globecom Workshops, San Diego, CA, USA, Dec. 2015, pp. 1–5.
[18] H. Nam, M. Choi, S. Han, C. Kim, S. Choi, and D. Hong, “A new filter-bank multicarrier system with two prototype filters for QAM symbols transmission and reception,” IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 5998–6009, Sep. 2016.
[19] C. Kim, Y. H. Yun, K. Kim, and J.-Y. Seol, “Introduction to QAM-FBMC: From waveform optimization to system design,” IEEE Commun. Mag., vol. 54, no. 11, pp. 66–73, Nov. 2016.
[20] D. Sim and C. Lee, “A MIMO receiver with two-dimensional ordering for maximum likelihood detection in FBMC-QAM,” IEEE Trans. Commun. Lett., vol. 21, no. 7, pp. 1465–1468, Jul. 2017.
[21] R. N. Bracewell, “Discrete Hartley transform,” J. Opt. Soc. Amer., vol. 73, no. 12, pp. 1832–1835, Dec. 1983.
[22] H.-S. Pan, “A filter bank multicarrier system based on the discrete Hartley transform and two prototype filters,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Dec. 2017.
[23] K.-C. Yang, “Time and frequency synchronization for a DHT-based filter bank multicarrier system,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2018.
[24] C.-L. Wang, H.-S. Pan, and C.-T. Tuan, “Filter bank multicarrier transmission based on the discrete Hartley transform,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Seoul, South Korea, May 2020, pp. 1–7.
[25] C.-L. Wang and H.-S. Pan, Filter Bank Multicarrier Communication System Based on Discrete Hartley Transform, US Patent, US 10735238 B1, Aug. 2020.
[26] C.-L. Wang and H.-S. Pan, Filter Bank Multicarrier Communication System Based on Discrete Hartley Transform, ROC Patent, I 703842, Sep. 2020.
[27] C.-L. Wang and H.-S. Pan, Receiver of Filter Bank Multicarrier Communication System Based on Discrete Hartley Transform, US Patent, US 10819549 B2, Oct. 2020.
[28] C.-L. Wang and I-C. Chiu, “A DHT-based filter bank multicarrier system using space-time block coding,” in Proc. 14th Int. Conf. Signal Process. Commun. Syst. (ICSPCS), Adelaide, Australia, Dec. 2020, pp. 1–7.
[29] J. Mao, C.-L. Wang, L. Zhang, C. He, P. Xiao, and K. Nikitopoulos, “A DHT-based multicarrier modulation system with pairwise ML detection,” in Proc. 28th IEEE Int. Symp. Pers., Indoor, Mobile, Radio Commun. (PIMRC), Montreal, QC, Canada, Oct. 2017, pp. 1–6.
[30] C.-H. Wang, “Data detection for a DHT-based MIMO filter bank multicarrier system,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2018.
[31] J. Ahn and H. S. Lee, “Frequency domain equalization of OFDM signal over frequency nonselective Rayleigh fading channels,” Electron. Lett., vol. 29, no. 16, pp. 1476–1477, Aug. 1993.
[32] C. Muschallik, “Improving an OFDM reception using an adaptive Nyquist windowing,” IEEE Trans. Consum. Electron., vol. 42, no. 3, pp. 259–269, Aug. 1996.
[33] J.-J. van de Beek, M. Sandell, and P. O. Borjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. Signal Process., vol. 45, no. 7, pp. 1800–1805, Jul. 1997.
[34] P. K. Remvik, N. Holte and A. Vahlin, “Fading and carrier frequency offset robustness for different pulse shaping filters in OFDM, ” in Proc. IEEE 48th Veh. Technol. Conf. (VTC-Spring), Ottawa, ON, Canada, May 1998, pp. 777–781.
[35] Y. Zhao and S.-G. Haggmann, “Intercarrier interference self-cancellation scheme for OFDM mobile communication systems,” IEEE Trans. Comm., vol. 49, pp. 1185–1191, Jul. 2001.
[36] A. Sayedi and G. J. Saulnier, “General ICI self-cancellation scheme for OFDM systems,” IEEE Trans. Veh. Technol., vol. 54, no. 1, pp. 198–210, Jan. 2005.
[37] O. Real and V. Almenar, “OFDM ICI self-cancellation scheme based on five weights,” in Proc. IEEE Int. Conf. Wireless Mobile Comput., Netw. Commun., Avignon, France, Oct. 2008, pp. 360–364.
[38] H.-G. Yeh and Y. K. Chang, “A conjugate operation for mitigating inter-carrier interference of OFDM systems,” in Proc. IEEE 60th Veh. Technol. Conf. (VTC-Fall), Los Angeles, CA, USA, Sep. 2004, pp. 3965–3969.
[39] H.-G. Yeh, Y. K. Chang, and B. Hassibi, “A scheme for canceling intercarrier interference through conjugate transmission for multicarrier communication systems,” IEEE Trans. Wireless Commun., vol. 6, no. 1, pp. 3–7, Jan. 2007.
[40] C.-L. Wang and Y.-C. Huang, “Intercarrier interference cancellation using general phase rotated conjugate transmission for OFDM systems,” IEEE Trans. Commun., vol. 58, no. 3, pp. 812–819, Mar. 2010.
[41] C.-L. Wang, P.-C. Shen, Y.-C. Lin, and J.-H. Huang, “An adaptive receiver design for OFDM systems using conjugate transmission,” IEEE Trans. Commun, vol. 61, no. 2, pp. 599–608, Feb. 2013.
[42] D. Sim and C. Lee, “Performance evaluation based on effective channel analysis for FBMC-QAM system with two prototype filters,” IEEE Trans. Commun., vol. 67, no. 5, pp. 3552–3565, Jan. 2019.
[43] S. Sesia, I. Toufik, and M. Baker, LTE-The UMTS Long Term Evolution: From Theory to Practice, 2nd ed. UK: John Wiley & Sons, 2011.
[44] W. Chung, B. Kim, M. Choi, H. Nam, H. Yu, S. Choi, and D. Hong, “Synchronization error in QAM-based FBMC system,” in Proc. IEEE Military Commun. Conf. (MILCOM), Baltimore, MD, USA, Oct. 2014, pp. 699–705.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *