|
[1] D. T. Kemp, “Stimulated acoustic emissions from within the human auditory system,” J. Acoust. Soc. Amer., vol. 64, pp. 1386–1391, 1978. [2] C. A. Shera and J. J. Guinan, Jr, “Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs,” J. Acoust. Soc. Amer., vol. 105, pp. 782–798, 1999. [3] P. M. Zurek, W. W. Clark, and D. O. Kim, “The behavior of acoustic distortion products in the ear canals of chinchillas with normal or damaged ears,” J. Acoust. Soc. Amer., vol. 72, pp. 774–780, 1982. [4] B. Lonsbury-Martin and G. Martin, “The clinical utility of distortion-product otoacoustic emissions,” Ear and Hearing, vol. 11, pp. 144–154, April 1990. [5] F. Harris, B. Lonsbury-Martin, B. Stagner, A. Coats, and G. Martin, “Acoustic distortion products in humans: Systematic changes in amplitude as a function of f2/f1 ratio,” J. Acoust. Soc. Amer., vol. 85, no. 1, pp. 220–229, 1989. [6] L. J. Kanis and E. de Boer, “Two-tone suppression in a locally active nonlinear model of the cochlea,” J. Acoust. Soc. Amer., vol. 96, pp. 2156–2165, 1994. [7] S. E. Barker, M. M. Lesperance, and P. R. Kileny, “Outcome of newborn hearing screening by ABR compared with four different DPOAE pass criteria,” Amer. J. Audiology, vol. 9, no. 2, pp. 142–148, 2000. [8] C. A. Sanford, D. H. Keefe, Y.W. Liu, D. Fitzpatrick, R. W. McCreery, D. E. Lewis, and M. P. Gorga, “Sound-conduction effects on DPOAE screening outcomes in newborn infants: Test performance of wideband acoustic transfer functions and 1-khz tympanometry,” Ear and Hearing, vol. 30, no. 6, pp. 635–652, 2009. [9] D. J. Brown and W. P. Gibson, “On the differential diagnosis of Ménière’s disease using low-frequency acoustic biasing of the 2f1–f2 DPOAE,” Hear. Res., vol. 282, no. 12, pp. 119–127, 2011. [10] Y. Shiomi, J. Tsuji, Y. Naito, N. Fujiki, and N. Yamamoto, “Characteristics of DPOAE audiogram in tinnitus patients,” Hear. Res., vol. 108, no. 1, pp. 83–88, 1997. [11] A. Job and J.-B. Nottet, “DPOAEs in young normalhearing subjects with histories of otitis media: Evidence of subclinical impairments,” Hear. Res., vol. 167, no. 1, pp. 28–32, 2002. [12] Y.-W. Liu and S. T. Neely, “distortion-product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells,” J. Acoust. Soc. Amer., vol. 127, pp. 2420–2432, 2010. [13] M. L. Whitehead, B. B. Stagner, B. L. Lonsbury-Martin, and G. K. Martin, “Measurement of otoacoustic emissions for hearing assessment,” IEEE Engineering in Medicine and Biology Magazine, vol. 13, pp. 210–226, April/May 1994. [14] H. M. Moir, J. C. Jackson, and J. F. C. Windmill, “No evidence for DPOAEs in the mechanical motion of the locust tympanum,” J. Experimental Biol., vol. 214, pp. 3165–3172, 2011. [15] H. M. Moir, J. C. Jackson, and J. F. C. Windmill, “Response to ‘Measurement of sensitive distortion-product otoacoustic emissions in insect tympanal organs’,” J. Experimental Biol., vol. 215, pp. 567–567, 02 2012. [16] M. van der Heijden and P. X. Joris, “Cochlear phase and amplitude retrieved from the auditory nerve at arbitrary frequencies,” J. Neurosci., vol. 23, no. 27, pp. 9194–9198, 2003. [17] L. J. Campbell and K. D. Slater, Personalization of auditory stimulus. United States: 9497530B1, Nov. 2016. [18] M. V. der Aerschot, D. W. Swanepoel, F. Mahomed-Asmail, H. C. Myburgh, and R. H. Eikelboom, “Affordable headphones for accessible screening audiometry: An evaluation of the Sennheiser HD202 II supra-aural headphone,” Int. J. Audiology, vol. 55, no. 11, pp. 616–622, 2016. [19] R. Kalluri and C. A. Shera, “Distortion-product source unmixing: A test of the two-mechanism model for DPOAE generation,” J. Acoust. Soc. Amer., vol. 109, no. 2, pp. 622–637, 2001. [20] L. A. Shaffer, R. H. Withnell, S. Dhar, D. J. Lilly, S. S. Goodman, and K. M. Harmon, “Sources and mechanisms of DPOAE generation: Implications for the prediction of auditory sensitivity,” Ear and Hearing, vol. 24, no. 5, pp. 367–379, 2003. [21] G. Zweig and C. A. Shera, “The origin of periodicity in the spectrum of evoked otoacoustic emissions,” J. Acoust. Soc. Amer., vol. 98, pp. 2018–2047, 1995. [22] A. Vetesník, D. Turcanu, E. Dalhoff, and A. W. Gummer, “Extraction of sources of distortion product otoacoustic emissions by onset-decomposition,” Hear. Res., vol. 256, no. 1–2, pp. 21–38, 2009. [23] T.-C. Liu, Y.-W. Liu, and H.-T. Wu, “Denoising clickevoked otoacoustic emission signals by optimal shrinkage,” J. Acoust. Soc. Amer., vol. 149, pp. 2659–2670, 2021. [24] A. V. Oppenheim and R. W. Schafer, Discrete-time Signal Processing. Upper Saddle River, New Jersey: Pearson, 3rd ed., 2010. [25] K. Vetter and S. di Rosario, “Expochirptoolbox: a Pure Data implementation of ESS impulse response measurement,” in Proc. Pure Data Convention, 2011. [26] C. Lesiak and A. Krener, “The existence and uniqueness of volterra series for nonlinear systems,” IEEE Trans. Automatic Control, vol. 23, no. 6, pp. 1090–1095, 1978. [27] Y. Mu, P. Ji, W. Ji, M. Wu, and J. Yang, “Modeling and compensation for the distortion of parametric loudspeakers using a one-dimension volterra filter,” IEEE/ACM Trans. Audio, Speech, and Language Processing, vol. 22, no. 12, pp. 2169–2181, 2014. [28] B. Widrow and S. Stearns, Adaptive Signal Processing. Englewood Cliffs, NJ: PrenticeHall, 1985. [29] B. Venema, N. Blanik, V. Blazek, H. Gehring, A. Opp, and S. Leonhardt, “Advances in reflective oxygen saturation monitoring with a novel in-ear sensor system: Results of a human hypoxia study,” IEEE Trans. Biomed. Engineering, vol. 59, no. 7, pp. 2003–2010, 2012. [30] V. Goverdovsky, D. Looney, P. Kidmose, and D. P. Mandic, “In-ear EEG from viscoelastic generic earpieces: Robust and unobtrusive 24/7 monitoring,” IEEE Sensors Journal, vol. 16, no. 1, pp. 271–277, 2016. |