帳號:guest(18.191.176.81)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):馬英碩
作者(外文):Ma, Ying-Shuo
論文名稱(中文):互連耦合和維納波動下網絡誘導延遲和丟包的事件觸發機制對大規模團隊衛星之隨機強健性H∞分散網絡編隊跟踪控制
論文名稱(外文):Stochastic Robust H∞ Decentralized Network Formation Tracking Control of Large-Scale Team Satellites via Event-Triggered Mechanism with Network-Induced Delay and Packet-Dropout under Interconnected Coupling and Wiener Fluctuation
指導教授(中文):陳博現
指導教授(外文):CHEN, BOR-SEN
口試委員(中文):吳仁銘
黃啟光
謝宗翰
口試委員(外文):WU, JEN-MING
HUANG, QI-GUANG
HSIEH, CHUN-GHAN
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:108061604
出版年(民國):110
畢業學年度:110
語文別:英文
論文頁數:45
中文關鍵詞:強健性控制網路控制編隊衛星系統隨機非線性系統模糊控制
外文關鍵詞:RobustControlNetworkControlFormationSatelliteStochasticNonlinearSystemT-Sfuzzy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:512
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在5G時代及6G時代,未來智慧城市通信服務藉由大規模編隊衛星是當前一個重要的研究課題。在這篇研究中,一個強健性的 H∞去中心化網絡編隊包含具有事件觸發機制的跟踪控制策略被提出,並且是用於大規模衛星編隊在通信任務上。首先,隊伍中的每台衛星會以非線性隨機系統來描述,其中包含了內在隨機波動、外部干擾和來自其他衛星的耦合效應。所提出對於每一台衛星的編隊追蹤控制方法必須考慮網路引起的延遲及封包遺失並且同時以事件激發機制的方法來節省通訊資源。
此外,對於編隊衛星的理想編隊形狀可以由一組參考模型建立,其中嵌入了所需的編隊形狀參考輸入。因此,大規模的編隊衛星設計問題可以簡化為一組獨立的H∞對於每顆衛星的模型網路追踪控制設計問題,並以有效率地衰減最壞的狀況下的外部干擾、其他衛星耦合效應、內部隨機波動、網絡引起的延遲和丟包
關於模型參考追蹤性能上。為了避免求解非線性偏微分Hamillion-Jacobin不等式(HJI)對於H∞分散式網絡編隊衛星追蹤控制問題,T-S模糊模型採用內插數個局部線性化系統來近似隨機非線性衛星系統。因此,HJI限制問題可以被轉換為一組線性矩陣不等式 (LMI),並且可以通過 LMI TOOLBOX 在MATLAB來求解。最後,由十台衛星和一個比較的模擬實例在對於三台衛星的編隊例子以來說明程序及驗證所提出的方法並與其他方法進行比較。
The team formation of large-scale satellites for communication services of future smart cities in the 5G and 6G era is an important research topic currently. In this study, a robust H∞ decentralized network team formation tracking control strategy with an event-triggered mechanism is proposed for the formation of large-scale satellites for communication tasks. At first, a satellite in the team formation is described by a nonlinear stochastic system with intrinsic random fluctuation, external disturbance, and coupling from other satellites. The proposed team formation tracking control for each satellite needs to consider the effect of network-induced delay and packet-dropout as well as save communication resources via an event-triggered mechanism. Further, the desired team formation of the large-scale satellite can be prescribed by a set of reference models with a desired formation shape embedded in their reference inputs. Therefore, the large-scale team formation design problem can be simplified as an independent H∞ network model reference tracking control design problem for each satellite to efficiently attenuate the worst-effect of external disturbance, coupling of other satellites, intrinsic random fluctuation, network-induced delay and packet-dropout on the model reference tracking performance. In order to avoid solving a nonlinear partial differential
Hamillion-Jacobin inequality(HJI) for the H∞ decentralized network formation control for each satellite in the team formation, the T-S fuzzy model is employed to interpolate several local linearized systems to approximate nonlinear satellite systems. Then the HJI in the H∞ decentralized network team formation design problem can be transformed into a set of linear matrix inequalities (LMIs) which can be easily solved by LMI TOOLBOX in MATLAB. Finally, a simulation example of team formation composed of ten satellites and a comparative team formation example of three satellites are given to illustrate the design procedure and to validate the proposed method in comparison with other methods.
Content
摘要……………………………………………………………………………………………………….I
Abstract…………………………………………………………………………………………………II
致謝……………………………………………………………………………………………………..III
Content…………………………………………………………………………………………………IV

INTRODUCTION…………………………………………………………………………………….1

SYSTEM DESCRIPTION AND PROBLEM FORMULATION………………………….4
ROBUST H∞ DECENTRALIZED NETWORK TRACKING CONTROL DESIGN for a LARGE-SCALE TEAM FORMATION SATELLITE SYSTEM……………………………………………………………………………………………….13

ROBUST H∞ DECENTRALIZED FUZZY NETWORK FORMATION TRACKING
CONTROL DESIGN FOR A LARGE-SCALE TEAM FORMATION SATELLITE SYSTEM………………………………………………………………………………………………17

SIMULATION EXAMPLE……………………………………………………………………….23

CONCLUSION……………………………………………………………………………………..40

REFERENCES……………………………………………………………………………………….43
[1] G. Liu and S. Zhang, “A Survey on Formation Control of Small Satellites,”
in Proceedings of the IEEE, vol. 106, no. 3, pp. 440-457, March 2018.
[2] M. Dalsmo and O. Egeland, “State feedback H1 suboptimal control of a
rigid spacecraft,” IEEE Trans. Automatic Control, vol. 42, no. 8, pp. 1186-
1191, Aug. 1997.
[3] B. Wu, “Spacecraft attitude control with input quantization,” Journal Of
Guidance, Control, and Dynamic, vol. 39, No.1, January 2016.
FIGURE 23: The tracking trajectories of three anglular velocities
based on the conventional H1 fuzzy decentralized
network team formation time-triggered control strategy for
the three satellites of the second simulation example. The
effect of oscillation does not exist for the conventional H1
decentralized network team formation time-triggered control
strategy
[4] O. Kodheli et al., “Satellite Communications in the New Space Era:
A Survey and Future Challenges,” IEEE Communications Surveys &
Tutorials, vol. 23, no. 1, pp. 70-109, Firstquarter 2021.
[5] I. Leyva-Mayorga et al., “LEO Small-Satellite Constellations for 5G and
Beyond-5G Communications,” IEEE Access, vol. 8, pp. 184955-184964,
2020.
[6] D. P. Scharf, F. Y. Hadaegh and S. R. Ploen, “A survey of spacecraft
formation flying guidance and control (part 1): guidance,” Proceedings of
the 2003 American Control Conference, 2003., 2003, pp. 1733-1739.
[7] Wang, P.K.C., Hadaegh, F.Y.“ Minimum-Fuel Formation Reconfiguration
of Multiple Free-Flying Spacecraft”. J of Astronaut Sci 47, 77–102 (1999).
[8] A. Essghaier, L.Beji, M.A. El Kamel, A. Abichou, J.Lerber., “Co-leaders
and a flexible virtual structure based formation motion control, ” International
Journal of Vehicle Autonomous Systems (IJVAS), Vol. 9, No. 1/2,
2011.
[9] Y. Huang and Y. Jia, “Adaptive Finite-Time 6-DOF Tracking Control for
Spacecraft Fly AroundWith Input Saturation and State Constraints,” IEEE
Trans. Aerospace and Electronic Systems, vol. 55, no. 6, pp. 3259-3272,
Dec. 2019.
[10] R.W. Beard, J. Lawton and F. Y. Hadaegh, “A coordination architecture for
spacecraft formation control,” IEEE Trans. Control Systems Technology,
vol. 9, no. 6, pp. 777-790, Nov. 2001.
[11] G. Pola, P. Pepe and M. D. D. Benedetto,“Decentralized Supervisory Control
of Networks of Nonlinear Control Systems,” IEEE Trans Automatic
Control, vol. 63, no. 9, pp. 2803-2817, Sept. 2018.
[12] C. B. Low, “Adaptable Virtual Structure Formation Tracking Control
Design for Nonholonomic Tracked Mobile Robots, With Experiments,”
2015 IEEE 18th International Conference on Intelligent Transportation
Systems, 2015, pp. 1868-1875.
[13] Wei Ren and R. W. Beard, “A decentralized scheme for spacecraft formation
flying via the virtual structure approach,” Proceedings of the 2003
American Control Conference, 2003., 2003, pp. 1746-1751.
[14] J. Lavaei, A. Momeni and A. G. Aghdam, “A Model Predictive Decentralized
Control Scheme With Reduced Communication Requirement for
Spacecraft Formation,” IEEE Trans. Control Systems Technology, vol. 16,
no. 2, pp. 268-278, March 2008.
[15] A. Yang,W. Naeem, G.W. Irwin and K. Li, “Stability Analysis and Implementation
of a Decentralized Formation Control Strategy for Unmanned
Vehicles,” IEEE Trans. on Control Systems Technology, vol. 22, no. 2, pp.
706-720, March 2014.
[16] Y. Chang, C. Chang, C. Chen and C. Tao, “Fuzzy Sliding-Mode Formation
Control for Multirobot Systems: Design and Implementation,” IEEE
Trans. on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42,
no. 2, pp. 444-457, April 2012.
[17] M. Lee, B. Chen, Y. Chang and C. Hwang, “Stochastic Robust Team For-mation Tracking Design of Multi-VTOL-UAV Networked Control System
in Smart City Under Time-Varying Delay and Random Fluctuation, ” IEEE
Access, vol. 8, pp. 131310-131326, 2020.
[18] X. Liu, S. S. Ge, C. Goh and Y. Li, “Event-Triggered Coordination for
Formation Tracking Control in Constrained Space With Limited Communication,”
IEEE Trans. on Cybernetics, vol. 49, no. 3, pp. 1000-1011,
March 2019.
[19] X. Liu and K. D. Kumar, “Network-Based Tracking Control of Spacecraft
Formation Flying with Communication Delays,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 48, no. 3, pp. 2302-2314, JULY
2012.
[20] Z. Pang, G. Liu, D. Zhou and D. Sun, “Data-Based Predictive Control for
Networked Nonlinear Systems With Network-Induced Delay and Packet
Dropout,”IEEE Trans. Industrial Electronics, vol. 63, no. 2, pp. 1249-
1257, Feb. 2016.
[21] Z. Zhong, C. Lin, Z. Shao and M. Xu, “Decentralized Event-Triggered
Control for Large-Scale Networked Fuzzy Systems,” IEEE Trans. Fuzzy
Systems, vol. 26, no. 1, pp. 29-45, Feb. 2018.
[22] X. Su, F. Xia, L. Wu and C. L. P. Chen, “Event-Triggered Fault Detector
and Controller Coordinated Design of Fuzzy Systems,” IEEE Trans. Fuzzy
Systems, vol. 26, no. 4, pp. 2004-2016, Aug. 2018.
[23] R. Liu, X. Cao and M. Liu, “Finite-Time Synchronization Control of
Spacecraft Formation With Network-Induced Communication Delay,”
IEEE Access, vol. 5, pp. 27242-27253, 2017.
[24] W. Liu, Y. Geng, B. Wu and D. Wang, “Neural-Network-Based Adaptive
Event-triggered Control for Spacecraft Attitude Tracking,” IEEE Trans.
Neural Networks and Learning Systems, vol. 31, no. 10, pp. 4015-4024,
Oct. 2020.
[25] J. Zhang, J. D. Biggs, D. Ye and Z. Sun, “Extended-State-Observer-
Based Event-Triggered Orbit-Attitude Tracking for Low-Thrust Spacecraft,”
IEEE Trans. Aerospace and Electronic Systems, vol. 56, no. 4, pp.
2872-2883, Aug. 2020, doi: 10.1109/TAES.2019.2955257.
[26] S. Xu, Z. Wei, Z. Huang, H. Wen and D. Jin, “Fuzzy-Logic-Based
Robust Attitude Control of Networked Spacecraft via Event-TriggeredMechanism,” IEEE Trans. Aerospace and Electronic Systems, vol. 57, no.
1, pp. 206-226, Feb. 2021.
[27] C. Wang, L. Guo, C. Wen, Q. Hu and J. Qiao, “Event-Triggered Adaptive
Attitude Tracking Control for SpacecraftWith Unknown Actuator Faults,”
IEEE Trans. Industrial Electronics, vol. 67, no. 3, pp. 2241-2250, March
2020.
[28] Z. Zhang, Y. Shi, Z. Zhang, H. Zhang and S. Bi, “Modified Order-
Reduction Method for Distributed Control of Multi-Spacecraft Networks
With Time-Varying Delays,” IEEE Trans. on Control of Network Systems,
vol. 5, no. 1, pp. 79-92, March 2018.
[29] P.Razzaghi and N.Assadian “Study of the triple-mass Tethered Satellite
System under aerodynamic drag and J2 perturbations” Advances in Space
Research 56, pp. 2141-2150, Aug. 2015.
[30] R. Vijayan, M. Bilal and K. Schilling, “Nonlinear dynamic modeling
of satellite relative motion with differential J2 and drag,” 2020 IEEE
Aerospace Conference, 2020, pp. 1-8.
[31] M. -Y. Lee, B. -S. Chen, C. -Y. Tsai and C. -L. Hwang, “Stochastic H1
Robust Decentralized Tracking Control of Large-Scale Team Formation
UAV Network System With Time-Varying Delay and Packet Dropout
Under Interconnected Couplings and Wiener Fluctuations,” IEEE Access,
vol. 9, pp. 41976-41997, 2021.
[32] R. K. Saha, “Spectrum Sharing in Satellite-Mobile Multisystem Using 3D
In-Building Small Cells for High Spectral and Energy Efficiencies in 5G
and Beyond Era,” IEEE Access, vol. 7, pp. 43846-43868, 2019.
[33] C. Sendi and M. A. Ayoubi, “Robust Fuzzy Tracking Control of Flexible
Spacecraft via a T–S Fuzzy Model,” IEEE Trans. on Aerospace and
Electronic Systems, vol. 54, no. 1, pp. 170-179, Feb. 2018.
[34] C. Liu, Z. Sun, D. Ye and K. Shi, “Robust Adaptive Variable Structure
Tracking Control for Spacecraft Chaotic Attitude Motion,” IEEE Access,
vol. 6, pp. 3851-3857, 2018.
[35] S. Zhen, X. Yaen, D. Chengchen, Z. Kun, H. Yushan and H. Yong, “Disturbance
observer based finite-time coordinated attitude tracking control
for spacecraft on SO(3),” Journal of Systems Engineering and Electronics,
vol. 31, no. 6, pp. 1274-1285, Dec. 2020.
[36] L. Yang and M. O. Hasna, “Performance Analysis of Amplify-and-
Forward Hybrid Satellite-Terrestrial Networks With Cochannel Interference,”
IEEE Trans. on Communications, vol. 63, no. 12, pp. 5052-5061,
Dec. 2015.
[37] C-Shi Tseng, B.-S Chen and H.-J Uang, “Fuzzy tracking control design
for nonlinear dynamic systems via T-S fuzzy model,” IEEE Trans. Fuzzy
Systems, vol. 9, no. 3, pp. 381-392, June 2001.
[38] C-Shi Tseng and B.-S. Chen, “H1 decentralized fuzzy model reference
tracking control design for nonlinear interconnected systems,” IEEE Trans.
Fuzzy Systems, vol. 9, no. 6, pp. 795-809, Dec. 2001.
[39] G. Feng, “A Survey on Analysis and Design of Model-Based Fuzzy
Control Systems,” IEEE Trans. on Fuzzy Systems, vol. 14, no. 5, pp. 676-
697, Oct. 2006.
[40] J. Zhang, J. D. Biggs, D. Ye and Z. Sun, “Extended-State-Observer-
Based Event-Triggered Orbit-Attitude Tracking for Low-Thrust Spacecraft,”
IEEE Trans. Aerospace and Electronic Systems, vol. 56, no. 4, pp.
2872-2883, Aug. 2020.
[41] X. Liu, S. S. Ge, C. Goh and Y. Li, “Event-Triggered Coordination for
Formation Tracking Control in Constrained Space With Limited Communication”,
IEEE Trans. Cybernetics, vol. 49, no. 3, pp. 1000-1011, March
2019.
[42] B.S. Chen, C.S. Wu, Y.W. Jan, “Adaptive Fuzzy Mixed H2=H1 Attitude
Control of Spacecraft”, IEEE Trans. Aerospace and Electronic Systems,
vol. 36, no. 4, pp.1343-1359, Nov. 2000.
[43] D. Wang, B. Wu, E. K. Poh. Satellite Formation Flying. Relative Dynamics,
Formation Design, Fuel Optimal Maneuvers and Formation Maintenance.
[44] S. Bahrami and M. Namvar, “Rigid Body Attitude Control With Delayed
Attitude Measurement,” IEEE Trans. Control Systems Technology, vol. 23,
no. 5, pp. 1961-1969, Sept. 2015.
[45] M. -Y. Lee, B. -S. Chen, C. -Y. Tsai and C. -L. Hwang, “Stochastic H1
Robust Decentralized Tracking Control of Large-Scale Team Formation
UAV Network System With Time-Varying Delay and Packet Dropout
Under Interconnected Couplings and Wiener Fluctuations,” IEEE Access,
vol. 9, pp. 41976-41997, 2021.
[46] B. Xiao, M. Huo, X. Yang and Y. Zhang, “Fault-Tolerant Attitude Stabilization
for Satellites Without Rate Sensor,” IEEE Trans. Industrial
Electronics, vol. 62, no. 11, pp. 7191-7202, Nov. 2015.47] F. Bacconi, E.Mosca ; A. Casavola, “Hybrid constrained formation flying
control of micro-satellites” IET Control Theory & Applications, vol. 1,
pp.513-521, Mar. 2007.
[48] C. Liu, X. Yue, K. Shi, and Z. Sun, “Inertia-free attitude stabilization
for flexible spacecraft with active vibration suppression, ” Int. J. Robust
Nonlinear Control, vol.29, no. 18, pp. 6311-6366, Dec. 2019.
[49] S. P. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities
in System and Control Theory. Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics, 1994.
[50] B. Osendal and A. Sulem, Applied Stochastic Control of Jump Diffusions,
2nd ed. Berlin, Germany: Springer, 2007.
[51] Yong He, Min Wu, Jin-Hua She and Guo-Ping Liu, “Parameter-dependent
Lyapunov functional for stability of time-delay systems with polytopictype
uncertainties,” IEEE Trans. Automatic Control, vol. 49, no. 5, pp. 828-
832, May 2004.
[52] L. Cao and B. Xiao, “Exponential and Resilient Control for Attitude Tracking
Maneuvering of SpacecraftWith Actuator Uncertainties,” IEEE/ASME
Trans. on Mechatronics, vol. 24, no. 6, pp. 2531-2540, Dec. 2019.
[53] W. Zhang, L.Xie, and B.S. Chen, Stochastic H2=H1 Control: A Nash
Game Approach, CRC Press London, 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *