帳號:guest(3.142.136.226)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝東明
作者(外文):Hsieh, Tung-Ming
論文名稱(中文):開關式磁阻馬達驅動系統及其混合儲能源供電之比較評估
論文名稱(外文):A SWITCHED-RELUCTANCE MOTOR DRIVE WITH HYBRID ENERGY STORAGE SUPPORT AND COMPARATIVE EVALUATION
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):謝欣然
陳景然
口試委員(外文):Shieh, Hsin-Jang
Chen, Ching-Jan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:108061589
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:104
中文關鍵詞:開關式磁阻馬達切換式整流器增壓電流控制換相移位電壓控制速度控制儲能系統蓄電池飛輪超級電容碳化矽
外文關鍵詞:switched-reluctance motorswitch-mode rectifiercommutation shiftvoltage boostingcurrent controlvoltage controlspeed controlenergy storage systembatteryflywheelsuper-capacitorSiC
相關次數:
  • 推薦推薦:0
  • 點閱點閱:284
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在建立一具混合儲能源緩衝之單相切換式整流器供電開關式磁阻馬達驅動系統。首先建構一非對稱橋式轉換器供電之開關式磁阻馬達驅動系統,透過妥善設計及實現之電力電路及控制架構,具良好之驅動性能。此外,由適當之換相移位及升壓策略,增進馬達於高速與高載下之性能。再者,以SiC-MOSFET和傳統Si-IGBT組成之開關式磁阻馬達驅動系統,以實測進行效率比較評估,其間同時建議合適之開關式磁阻馬達驅動系統功率量測方式。
接著,建立一單相全橋切換式整流器作為開關式磁阻馬達驅動系統之主動式交流前級。於驅動模式下,有良好調節直流鏈電壓之馬達驅動系統具優越之驅動性能,以及良好之交流入電電力品質。同時,由於適當之控制及所採全橋切換式整流器具雙向功率能力,使再生煞車可成功執行,回收之馬達軸動能可回送直流鏈,再至市電。
再者,建立一混合式儲能系統,於驅動系統之直流鏈提供能量緩衝。所建混合儲能系統包含開關式磁阻馬達驅動飛輪、超級電容組與蓄電池組,各自經雙向介面轉換器介接至直流鏈。透過適當設計之電力電路及控制器,各儲能系統皆具良好充放電特性。最後,經所提之測量結果,展示所建具混合儲能源之切換式磁阻馬達驅動系統,於一些情況下之整體操作特性。
This thesis establishes a single-phase bidirectional switch-mode rectifier (SMR) powered switched-reluctance motor (SRM) drive with energy storage buffer. First, the asymmetric bridge converter fed SRM drive is constructed. After properly designing and implementing the power circuit and control schemes, satisfactory motor driving performance is preserved. In addition, the commutation shifting and voltage boosting are properly treated to enhance the performances under heavier load and higher speed. Moreover, the efficiencies of SRM drives constructed using SiC-MOSFETs and Si-IGBTs are comparatively assessed experimentally. Meanwhile, the adequate motor power measurement for an SRM drive is also suggested.
Second, a single-phase H-bridge switch-mode rectifier is established and used as the AC front-end of the SRM drive. In driving mode, the SRM drive having well-regulated DC-link voltage possesses good driving performance and satisfactory line drawn power quality. And the regenerative braking can be successfully operated thanks to the proper control for the SRM drive and the bidirectional capability of the employed H-bridge SMR. The recovered motor shaft kinetic energy can be sent back to the DC-link, then the mains.
Third, a hybrid energy storage system (HESS) is established to support energy buffer for the SMR-fed SRM drive at its DC-link. The established HESS consists of an SRM- driven flywheel (FW), a super-capacitor (SC) bank and a battery bank. Each storage device is individually connected to the DC-link via a one-leg bidirectional boost-buck interface converter. Through the properly designed power circuits and controllers, each of the established energy storage system possesses good charging and discharging characteristics. Finally, some measured results are provided to demonstrate the operating characteristics of the whole SRM drive equipped with the HESS in various conditions.
ABSTRACT i
ACKNOWLEDGEMENTS ii
LIST OF CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES xiii
LIST OF SYMBOLS xiv
LIST OF ABBREVIATION xxiii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 INTRODUCTORY SWITCHED-RELUCTANCE MOTOR DRIVE AND ENERGY STORAGE TECHNOLOGIES 5
2.1 Introduction 5
2.2 Switched-reluctance Motors 5
2.3 Some Interface Converters 11
2.4 Some Key Issues of SMR-fed SRM Drive 14
2.5 Energy Storage Devices 14
2.6 Applications of Energy Storage System 17
2.7 Power Semiconductor Devices 20
CHAPTER 3 THE DEVELOPED SWITCHED-RELUCTANCE MOTOR DRIVE 22
3.1 Introduction 22
3.2 Power Circuit 22
3.3 Digital Control Environment 25
3.4 Control Schemes 28
3.5 Experimental Evaluation 31
3.6 Performance Evaluation by the Adoption of SiC Module 44
CHAPTER 4 SWITCH-MODE RECTIFIER FED SRM DRIVE 49
4.1 Introduction 49
4.2 Single-phase H-bridge Boost SMR 49
4.3 Single-phase H-bridge SMR-Fed SRM Drive 55
CHAPTER 5 SINGLE-PHASE SMR-FED SRM DRIVE WITH ENERGY SUPPORT DC-LINK. 60
5.1 Introduction 60
5.2 Flywheel Energy Storage System 60
5.2.1 System Configuration 60
5.2.2 Commutation Instant Shift 62
5.2.3 Control Scheme 63
5.2.4 Performance Evaluation 65
5.2.5 Flywheel Interface Converter 67
5.3 Supercapacitor Energy Storage System 77
5.3.1 The Employed Supercapacitor 77
5.3.2 Capacitance and ESR Estimation 77
5.3.3 Supercapacitor Interface Converter 79
5.3.4 Measured Results 82
5.4 Battery Energy Storage System 84
5.4.1 The Employed Battery 84
5.4.2 Battery Interface Converter 84
5.4.3 Measured Results 87
5.4.4 Performance Evaluation by the Adoption of SiC Module 89
5.5 Comparison of the Power Type Energy Storage Systems 90
5.6 SMR-fed SRM Drive with Hybrid Energy Storage Support 92
CHAPTER 6 CONCLUSIONS 95
REFERENCES 96
A. Basics of SRM
[1] P. C. Sen, Principles of Electric Machines and Power Electronics, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2014.
[2] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001.
[3] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015.
[4] J. Ahn and G. F. Lukman, “Switched reluctance motor: research trends and overview,” CES TEMS., vol. 2, no. 4, pp. 339-347, Dec. 2018.
[5] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang, and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5, no. 9, pp. 1813-1826, Jul. 2012.
[6] K. Koinuma, K. Aiso, and K. Akatsu,“A novel self-cooling SRM for electric hand tools,” in Proc. IEEE ECCE, 2018, pp. 6116-6120.
[7] J. W. Jiang, B. Bilgin, and A. Emadi, “Three-phase 24/16 switched reluctance machine for a hybrid electric powertrain,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 76-85, Mar. 2017.
[8] B. Bilgin, B. Howey, A. D. Callegaro, J. Liang, M. Kordic, J. Taylor and A. Emadi, “Making the case for switched reluctance motors for propulsion applications,” IEEE Trans. Veh. Technol., vol. 69, no. 7, pp. 7172-7186, Jul. 2020.
[9] M. M. Namazi, S. M. S. Nejad, A. Tabesh, A. Rashidi, and M. Liserre, “Passivity-based control of switched reluctance-based wind system supplying constant power load,” IEEE Trans. Ind. Electron., vol. 65, no. 12, pp. 9550-9560, 2018.
[10] P. J. D. S. Neto, T. A. D. S. Barros, M. V. D. Paula, R. R. D. Souza, and E. R. Filho, “Design of computational experiment for performance optimization of a switched reluctance generator in wind system,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 406-419, Mar. 2018.
[11] J. B. Bartolo, M. Degano, J. Espina, and C. Gerada, “Design and initial testing of a high-speed 45-kw switched reluctance drive for aerospace application,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 988-997, 2017.
[12] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, Feb. 2002.
[13] K. Vijayakumar, R. Karthikeyan, S. Paramasivam, R. Arumugam, and K. N. Srinivas, “Switched reluctance motor modeling, design, simulation, and analysis: a comprehensive review,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4605-4617, Dec. 2008.
[14] P. C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649-659, Feb. 2010.
[15] D. Cabezuelo, J. Andreu, I. Kortabarria, E. Ibarra, and I. Garate, “SRM converter topologies for EV application: State of the technology,” in Proc. IEEE ISIE, 2017, pp. 861-866.
B. SRM Converters
[16] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, Nov. 1991.
[17] M. Ehsani, J. T. Bass, T. J. E. Miller, and R. L. Steigerwald, “Development of a unipolar converter for variable reluctance motor drives,” IEEE Trans. Ind. Appl., vol. IA-23, no. 3, pp. 545-553, May/Jun. 1992.
[18] J. Ye, P. Malysz, and A. Emadi, “A fixed-switching-frequency integral sliding mode current controller for switched reluctance motor drives,” in Proc. IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 3, no. 2, 2015. pp. 381-394.
[19] T. Nonaka, Y. Nakazawa, K. Ohyama, H. Fujii, H. Uehara, and Y. Hyakutake, “Inverter improving motor efficiency of switched reluctance motor for electric vehicle,” in Proc. EPE-PEMC, 2013, pp. 1-8.
[20] J. Ye and A. Emadi, “Power electronic converters for 12/8 switched reluctance motor drives: a comparative analysis,” IEEE Trans. Transport. Electrific., pp. 1-6, 2014.
[21] F. Peng, J. Ye, and A. Emadi, “An asymmetric three-level neutral point diode clamped converter for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8618-8631, 2017.
[22] V. Fernão Pires, A. Cordeiro, D. Foito, A. J. Pires, J. Martins and H. Chen, “A multilevel fault-tolerant power converter for a switched reluctance machine drive,” IEEE Access, vol. 8, pp. 21917-21931, 2020.
[23] D. Cabezuelo, J. Andreu, I. Kortabarria, E. Ibarra, and I. Garate, “SRM converter topologies for EV application: State of the technology,” in Proc. IEEE ISIE, 2017, pp. 861-866.
[24] A. M. Hava, V. Blasko, and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, Sep./Oct. 1992.
[25] S. Ebrahimi, V. Najmi, S. Ebrahimi, and H. Oraee, “A ZVS-resonant bifilar drive circuit for SRM with a reduction in stress voltage of switches,” in Proc. IEEE ACEMP, Sep. 2011, pp. 125-128.
[26] S. Chan and H. R. Bolton, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” in Proc. IEEE Elect. Power Appl., Sep. 1993, vol. 140, no. 5, pp. 316-322.
[27] K. R. Geldhof, T. J. Vyncke, F. M. L. L. De Belie, L. Vandevelde, J. A. A. Melkebeek and R. K. Boel “Embedded Runge-Kutta methods for the integration of a current control loop in an SRM dynamic finite element model,” IET Sci. Meas. Technol., vol. 1, no. 1, pp. 17-20, 2007.
[28] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IET Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[29] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, Mar. 2009.
[30] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, May. 2009.
[31] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, Sep. 2010.
C. Modeling and Parameter Estimation of SRM
[32] K. I. Hwu, “Development of a switched reluctance motor drive,” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2001.
[33] B. P. Loop and S. D. Sudoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 743-751, May/Jun. 2003.
[34] M. Ayaz and A. B. Yildiz, “An equivalent circuit model for switched reluctance motor,” in Proc. IEEE MELCON., May. 2006, pp. 1182-1185.
[35] V. Valdivia, R. Todd, F. J. Bryan, A. Barrado, A. Lázaro, and A. J. Forsyth, “Behavioral modeling of a switched reluctance generator for aircraft power systems,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2690-2699, Jun. 2014.
[36] J. Dong, B. Howey, B. Danen, J. Lin, J. W. Jiang, B. Bilgin, and A. Emadi, “Advanced dynamic modeling of three-phase mutually coupled switched reluctance machine,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 146-154, Mar. 2018.
D. Commutation Instant Tuning
[37] M. Rodrigues, P. J. C. Branco, and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, Jun. 2001.
[38] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, Sep. 2003.
[39] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, Mar. 2003.
[40] J. Y. Chai, Y. W. Lin, and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEEE Proc. Elec. Power Appl., vol. 153, no. 3, pp. 348-360, May 2006.
[41] S. Shin, N. Kawagoe, T. Kosaka and N. Matsui, “Study on commutation control method for reducing noise and vibration in SRM,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 4415- 4424, Sep./Oct. 2018.
[42] S. A. Fatemi, H. M. Cheshmehbeigi, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
[43] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tuning,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, Jul. 2015.
[44] H. N. Huang, K. W. Hu, Y. W. Wu, T. L. Jong and C. M. Liaw, “A current control scheme with back-EMF cancellation and tracking error adapted commutation shift for switched- reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7381-7392, Dec. 2016.
[45] H. N. Huang, K. W. Hu, and C. M. Liaw, “A switch-mode rectifier fed switched-reluctance motor drive with dynamic commutation shifting using DC-link current,” IET Elec. Power Appl., vol. 11, no. 4, pp. 640-652, Dec. 2017.
[46] C. Y. Ho, J. C. Wang, K. W. Hu, and C. M. Liaw, “Development and operation control of a switched-reluctance motor driven flywheel,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 526-537, Jan. 2019.
[47] D. H. Lee and J. W. Ahn, “A novel four-level converter and instantaneous switching angle detector for high speed SRM drive,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 2034-2041, Sep. 2007.
E. Current Control
[48] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[49] R. Gobbi and K. Ramar, “Optimization techniques for a hysteresis current controller to minimize torque ripple in switched reluctance motors,” IET Proc. Elec. Power Appl., vol. 3, no. 5, pp. 453-460, Dec. 2009.
[50] I. M. Alsofyani, K. Y. Kim, S. S Lee, and K. B. Beum, “A modified flux regulation method to minimize switching frequency and improve DTC-hysteresis-based induction machines in low-speed regions,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 7, no. 4, pp 2346-2355, Dec. 2019.
[51] H. Alharkan, S. Saadatmand, M. Ferdowsi and P. Shamsi, “Optimal tracking current control of switched reluctance motor drives using reinforcement Q-Learning scheduling,” in IEEE Access, vol. 9, pp. 9926-9936, 2021.
[52] H. Makino, T. Kosaka, and N. Matsui, “Control performance comparisons among three types of instantaneous current profiling technique for SR motor,” IET Proc. PEMD, pp. 1-6, 2014.
[53] I. Manolas, G. Papafotiou, and S. N. Manias, “Sliding mode PWM for effective current control in switched reluctance machine drives,” in Proc. IEEE IPEC, 2014, pp. 1606-1612.
[54] J. Ye, P. Malysz, and A. Emadi, “A fixed-switching-frequency integral sliding mode current controller for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 381-394, Jun. 2015.
[55] G. Fang, F. P. Scalcon, D. Xiao, R. P. Vieira, H. A. Gründling and A. Emadi, “Advanced control of switched reluctance motors (SRMs): a review on current regulation, torque control and vibration suppression,” IEEE Open J. Ind. Electron. Soc.., vol. 2, pp. 280-301, Apr. 2021.
F. Speed Control
[56] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, Dec. 1997.
[57] C. Lucas, M. M. Shanehchi, P. Asadi, and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, vol. 3, 2000. pp. 1573-1577.
[58] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IET Proc. Electric Power Appl., vol. 148, no. 4, pp. 345-352, 2001.
[59] G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy,” Proc. IEEE IAS, vol. 1, pp. 263-270, 1995.
[60] A. Karami-Mollaee, “Sliding mode control of switch reluctance motor without chattering,” in Proc. IEEE ICEE, 2013, pp. 1-5.
[61] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
[62] S. K. Sahoo, S. K. Panda, and J. X. Xu, “Application of spatial iterative learning control for direct torque control of switched reluctance motor drive,” in Proc. IEEE PES, 2007, pp. 1-7.
G. Switch-Mode Rectifiers
[63] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, May. 2003.
[64] S. H. Li and C. M. Liaw, “Modelling and quantitative direct digital control for a DSP-based soft-switching-mode rectifier,” IEE Proc.-Electr. Power Appl., vol. 150, no. 1, pp. 21-30, Jan. 2003.
[65] R. Teodorescu, F. Blaabjerg, M. Liserre and P. C. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” IEE Proc.-Electr. Power Appl., vol. 153, no. 5, pp. 750-762, 2006.
[66] A. J. Sabzali, E. H. Ismail, M. A. Al-Saffar, and A. A. Fardoun, “New bridgeless DCM Sepic and Ćuk PFC rectifiers with low conduction and switching losses,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 873-881, Mar./Apr. 2011.
[67] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, May, 2008.
[68] Y. C. Chang and C. M. Liaw, “A flyback rectifier with spread harmonic spectrum,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, Aug. 2011.
[69] H. Valipour, M Mahdavi, and M. Ordonez, “Resonant bridgeless AC/DC rectifier with high switching frequency and inherent PFC capability,” IEEE Trans. Power Electron., vol. 35, no. 1, pp. 232-246, Jan. 2020.
[70] D. Rothmund, T. Guillod, D. Bortis and J. W. Kolar, “99.1% efficient 10 kV SiC-based medium-voltage ZVS bidirectional single-phase PFC AC/DC stage,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 7, no. 2, pp. 779-797, Jun. 2019.
H. Energy Storage Systems
[71] V. A. Boicea, “Energy storage technologies: the past and the present,” in Proc. IEEE, vol. 102, no. 11, 2014, pp. 1777-1794.
[72] T. Ma, M. H. Cintuglu, and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, 2015.
[73] J. Rocabert, R. Capó-Misut, R. S. Muñoz-Aguilar, J. I. Candela and P. Rodriguez, “Control of energy storage system integrating electrochemical batteries and supercapacitors for grid-connected applications,” IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1853-1862, Mar./Apr. 2019.
[74] B. Papari, C. S. Edrington, I. Bhattacharya and G. Radman, “Effective energy management of hybrid AC–DC microgrids with storage devices,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 193-203, Jan. 2019.
[75] U. Manandhar, A. Ukil, H. B. Gooi, N. R. Tummuru, S. K. Kollimalla, B. Wang and K. Chaudhrai, “Energy management and control for grid connected hybrid energy storage system under different operating modes,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1626-1636, Mar. 2019.
[76] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “An EV SRM drive powered by battery/ supercapacitior with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, Aug. 2015.
[77] P. J. Kollmeyer, M. Wootton, J. Reimer, D. F. Opila, H. Kurera, R. Gu, T. Stience, E. Chemali, M. Wood, and A. Emadi, “Real-time control of a full scale Li-ion battery and Li-ion capacitor hybrid energy storage system for a plug-in hybrid vehicle,” IEEE Trans. Ind. Appl. vol. 55, no. 4, pp. 4204-4214, Jul./Aug. 2019.
[78] M. O. Badawy, T. Husain, Y. Sozer, and J. A. D. Abreu-Garcia, “Integrated control of an IPM motor drive and a novel hybrid energy storage system for electric vehicles,” IEEE Trans. Ind. Appl., vol. 53. no. 6, pp. 5810-5819, Nov./Dec. 2017.
[79] H. Moradisizkoohi, N. Elsayad and O. A. Mohammed, “Experimental verification of a double-input soft-switched DC–DC converter for fuel cell electric vehicle with hybrid energy storage system,” IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 6451-6465, Nov./Dec. 2019.
[80] S. Faddel, A. A. Saad, M. E. Hariri and O. A. Mohammed, “Coordination of hybrid energy storage for ship power systems with pulsed loads,” IEEE Trans. Ind. Appl., vol. 56, no. 2, pp. 1136-1145, Mar./Apr. 2020.
[81] M. Hino and D, Hara, “Application of an energy storage system using lithium-ion batteries for more effective regenerative energy utilization,” JR EAST Technical Review., no. 31, Mar. 2014, pp. 23-26.
[82] S. Nategh, A. Boglietti, Y. Liu, D. Barber, R. Brammer, D. Linberg, and O. Aglen, “A review on different aspects of traction motor design for railway applications,” IEEE Trans. Ind. Appl., vol. 56, no. 1, pp. 2148-2157, May/Jun. 2020.
[83] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, “Energy storage systems for transport and grid applications,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3881-3895, Dec. 2010.
[84] P. Arboleya, P. Bidaguren, and U. Armendariz, “Energy is on board: energy storage and other alternatives in modern light railways,” IEEE Elect. Mag., vol. 4, no. 3, pp. 30- 41, Sep. 2016.
[85] M. Ogasa, “Application of energy storage technologies for electric railway vehicles- examples with hybrid electric railway vehicles,” IEEJ Trans. Elect. Electron. Eng., vol. 5, no. 3, pp. 304-311, Feb. 2010.
[86] T. Ratniyomchai, S. Hillmansen, and P. Tricoli, “Recent developments and applications of energy storage devices in electrified railways,” IET Electr. Syst. Transp., vol. 4, no. 1, Sep. 2014.
[87] D. Iannuzzi and P. Tricoli, “Metro trains equipped onboard with supercapacitors: a control technique for energy saving,” in Proc. IEEE SPEEDAM, 2010, pp. 750-756.
[88] S. Tominaga, I. Suga, H. Araki, H. Ikejima, M. Kusuma, and K. Kobayashi, “Development of energy-saving elevator using regenerated power storage system,” in Proc. IEEE PCC- Osaka, vol. 2, 2002, pp. 890-895.
[89] N. Jabbour, C. Mademlis, and I. Kioskeridis, “Improved performance in a supercapacitor- based energy storage control system with bidirectional dc-dc converter for elevator motor drives,” in Proc. IET PEMD, 2014, pp. 1-6.
[90] K. Kafalis and A. D. Karlis, “Comparison of flywheels and supercapacitors for energy saving in elevators,” in Proc. IEEE IAS, 2016, pp. 1-8.
[91] N. Jabbour and C. Mademlis, “Improved control strategy of a supercapacitor-based energy recovery system for elevator applications,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8398-8408, Dec. 2016.
[92] R. G. Lawrence, K. Craven, and G. D. Nichols, “Flywheel UPS,” IEEE Ind. Appl. Mag., vol. 9, no.3, pp. 44-50, May/e. 2003.
[93] S. Ohn, J. Yu, R. Burgos, D. Boroyeich, and H. Suryanarayana, “Reduced common-mode voltage PWM scheme for full-SiC three-level uninterruptible power supply with small DC-link capacitors,” IEEE Trans. Power Electron., vol. 35, no. 8, pp. 8638-8651, Aug. 2020.
[94] A. Kusko and J. Dedad, “Short-term and long-term energy storage methods for standby electric power systems,” IEEE Trans. Ind. Appl., vol. 13, no.4, pp. 66-72, 2005.
[95] H. H. Abdeltawab and Y. A. I. Mohamed, “Robust energy management of a hybrid wind and flywheel energy storage system considering flywheel power losses minimization and grid- code constraints,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4242-4254, Jul. 2016.
[96] B. H. Kenny, P. E. Kascak, R. Jansen, T. Dever, and W. Santiago “Control of a high-speed flywheel system for energy storage in space applications,” IEEE Trans. Ind. Appl., vol. 41, no. 4, pp. 1029-1038, Jul./Jun. 2005.
[97] R. Arghandeh, M. Pipattanasomporn, and S. Rahman, “Flywheel energy storage systems for ride-through applications in a facility microgrid,” IEEE Trans. Smart Grid., vol. 3, no. 4, pp. 1955-1962, Dec. 2012.
[98] J. Itoh, D. Sato, T. Nagano, K. Tanaka, N. Yamada, and K. Kato, “Development of high efficiency flywheel energy storage system for power load-leveling,” in Proc. IEEE INTELEC, 2014, pp. 1-8.
[99] J. Itoh, T. Nagano, K. Tanaka, K. Orikawa, and N. Yamada “Development of flywheel energy storage system with multiple parallel drives,” in Proc. IEEE ECCE, 2014, pp. 4568-4575.
[100] W. Gruber, T. Hinterdorfer, H. Sima, A. Schulz and J. Wassermann, “Comparison of different motor-generator sets for long term storage flywheels,” in Proc. IEEE Power Electron, Electrical Drives, Automation and Motion., 2014, pp. 161-166.
[101] G. Cimuca, S. Breban, M. M. Radulescu, C. Saudemont, and B. Robyns, “Design and control strategies of an induction-machine-based flywheel energy storage system associated to a variable-speed wind generator,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 526-534, Jun. 2010.
[102] P. Yulong, A. Cavagnino, S. Vaschetto, C. Feng and A. Tenconi, “Flywheel energy storage systems for power systems application,” in Proc. IEEE ICCEP, 2017
[103] E. Bernsmüller, L. G. B. Rolim, and A. C. Ferreira, “External rotor switched reluctance machine for a kinetic energy storage system,” in Proc. IEEE IECON, 2016, pp. 1636-1641.
[104] J. Sun, Z. Kuang, S. Wang, and Y. Chen, “Efficiency optimal control of switched reluctance machine over wide speed range applied to flywheel energy storage system,” in Proc. IEEE EML, 2012, pp. 1-6.
I. Interface Converters
[105] F. Caricchi, F. Crescimbini, G. Noia, and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, vol. 1, 1994, pp. 381-389.
[106] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
[107] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system,” IEEE Trans. Power. Electron., vol. 27, no. 3, pp. 1237-1248, Mar. 2012.
[108] A. A. Fardoun, E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “Bi-directional converter with low input/output current ripple for renewable energy applications,” in Proc. IEEE ECCE, 2011, pp. 3322-3329.
[109] Z. Zhang, O. C. Thomsen, and M. A. E. Andersen, “Optimal design of a push-pull-forward half-bridge (PPFHB) bidirectional dc–dc converter with variable input voltage,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp.2761-2771, Jul. 2012.
[110] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, May, 2015.
[111] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional dc-dc converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, Jul./Aug. 2015.
[112] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrer, “DC microgrids—Part II: A review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electronics., vol. 31, no. 5, pp.3528-3549, 2016.
[113] A. Mallik and A. Khaligh, “Variable-switching-frequency state-feedback control of a phase- shifted full-bridge DC/DC converter,” IEEE Trans. Power Electron., vol. 32, no. 8, pp. 6523- 6531, Aug. 2017.
[114] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, Dec. 2017.
[115] S. A. Ansari and J. S. Moghani, “A novel high voltage gain noncoupled inductor SEPIC converter,” IEEE Trans. Ind. Electron., vol. 66, no. 9, pp. 7099-7108, Sep. 2019.
J. Power Semiconductor Devices
[116] F. F. Wang and Z. Zhang, “Overview of silicon carbide technology: device, converter, system, and application,” CPSS TPEA, vol. 1, no. 1, pp. 13-32, Dec. 2016.
[117] M. Parvez, A. T. Pereira, N. Ertugrul, N. H. E. Weste, D. Abbott and S. F. Al-Sarawi, “Wide bandgap DC–DC converter topologies for power applications,” Proc. IEEE, vol. 109, no. 7, pp. 1253-1275, Jul. 2021.
[118] A. K. Morya, M. C. Gardner, B. Anvari, L. Liu, A. G. Yepes, J. D. Gandoy and H. A. Toliyat, “Wide bandgap devices in AC electric drives: opportunities and challenges,” IEEE Trans. Transport. Electrific., vol. 5, no. 1, pp. 3-20, Mar. 2019.
[119] B. J. Baliga, Fundamentals of Power Semiconductor Devices, Springer, 2008.
[120] W. Perdikakis, M. J. Scott, K. J. Yost, C. Kitzmiller, B. Hall and K. A. Sheets, “Comparison of Si and SiC EMI and efficiency in a two-level aerospace motor drive application,” IEEE Trans. Transport. Electrific., vol. 6, no. 4, pp. 1401-1411, Dec. 2020.
[121] S. Hazra, A. De, L. Cheng, J. Palmour, M. Schupbach, B. A. Hull, S. Allen, and S. Bhattacharya, “High switching performance of 1700-V, 50-A SiC power MOSFET over Si IGBT/BiMOSFET for advanced power conversion applications,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4742-4754, Jul. 2016.
[122] J. Chen, X. Du, Q. Luo, X. Zhang, P. Sun and L. Zhou, “A review of switching oscillations of wide bandgap semiconductor devices,” IEEE Trans. Power Electron., vol. 35, no. 12, pp. 13182-13199, Dec. 2020.
K. Others
[123] S. Y. Lin, “A switched reluctance motor drive with energy harvest and storage,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2020.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *