帳號:guest(18.191.30.119)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):白金豐
作者(外文):Pai, Chin-Feng
論文名稱(中文):單相LCL換流器建模與改善研究
論文名稱(外文):Modeling and Improvement Research of Single-Phase LCL Inverter
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):余國瑞
吳毓恩
林景源
口試委員(外文):Yu, Gwo-Ruey
Wu, Yu-En
Lin, Jing-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:108061588
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:89
中文關鍵詞:單相LCL全橋式併網型換流器換流器建模穩定度分析分切合整直接數位控制
外文關鍵詞:single-phase LCL full-bridge grid-connected inverterinverter modelingstability analysisdirect digital control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:426
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在對一部單相LCL全橋式併網型換流器進行建模與分析,並利用模擬軟體預測換流器可能面對的問題,最後提出相對應的解決方案,且使用模擬與實測來驗證改善方法的可行性。
在硬體建模方面,拓樸架構與部分硬體參數為已知,可以直接匯入建模軟體中,而剩餘硬體參數必須自行計算與量測,再輸入至建模軟體,例如電磁干擾濾波器串聯漏感值。在韌體建模方面,原系統是使用德州儀器TI TMS320F28069 C2000系列微控制器,為了建立微控制器架構,必須了解載波的生成原理、功率開關切換機制、類比訊號取樣更新邏輯及數位濾波器基本架構。有了以上背景知識,最後才能解析內部控制法,包括鎖相迴路控制、內迴路電流控制及外迴路電壓控制。
由於電網阻抗的關係,單相LCL全橋式併網型換流器可能會有穩定性的問題,尤其是在弱電網的條件下。本研究根據短路比(SCR)研究電網阻抗效應,並在各種SCR下對換流器進行穩定度分析,方法包括根軌跡圖、步階響應、虛擬阻抗及阻抗法分析。
最後提出另一種取樣更新邏輯,並搭配分切合整直接數位控制法,改善當換流器面對電網諧波失真與弱電網時,所產生的輸出電流失真問題。以上解決方法皆使用理論分析、模擬及量測的時域結果證明其效益。
本研究之主要貢獻為:(1)針對一部單相LCL全橋式併網型換流器進行建模,(2)執行系統穩定度分析,了解濾波電感值衰減與電網阻抗變化對系統穩定度的影響,(3)最後針對換流器操作在電網諧波失真與弱電網時,提出有效的解決方案,如分切合整直接數位控制法。
關鍵詞:單相LCL全橋式併網型換流器、換流器建模、穩定度分析、分切合整直接數位控制
This research aims to model and analyze a single-phase LCL full-bridge grid-connected inverter, and use simulation to predict the problems that the inverter may face, and finally propose corresponding solutions.
In hardware modeling, the topology and some hardware parameters are known a priori and can be directly imported into the model. In firmware modeling, the original system uses TI TMS320F28069 C2000 series microcontrollers. In order to build the firmware modeling architecture, it is necessary to understand the carrier generation principle, switching mechanism, analog signal sampling update logic, and the architecture of digital filters. With the above background knowledge, we can finally analyze the internal control methods, including phase-locked loop control, inner-loop current control, and outer-loop control.
Due to line impedance effect, the inverter connected to the grid may cause stability problems, especially under weak grid conditions. This research investigates the grid-impedance effect in terms of short-circuit-ratio (SCR) and conducts stability analysis of the inverter under various SCRs. Then, a direct digital controller for the single inverter is proposed to stabilize the system and reduce current distortion. The modeling and proposed approach are verified with simulated and experimental results.
The main contributions of this research are: (1) modeling a single-phase LCL full-bridge grid-connected inverter, (2) analyzing the system stability to understand the attenuation of the filter inductance and the grid-impedance varation on system stability, and (3) proposing effective solutions are when the inverter is operated under grid-voltage distortion and weak grid, such as the direct digital control method.
Keywords: Single-phase LCL full-bridge grid-connected inverter, inverter modeling, stability analysis, direct digital control
摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-2-1 建模軟體 2
1-2-2 以離散域(z域)或連續域(s域)分析換流器系統 4
1-2-3 基本拓樸 6
1-2-4 電感值衰減 7
1-2-5 電網阻抗 8
1-3 論文大綱 11
第二章 系統建模 12
2-1 單相換流器系統架構 12
2-2 硬體參數確認 13
2-3 微控制器簡介 17
2-4 載波生成 19
2-4-1 三角波載波 19
2-4-2 鋸齒波載波 20
2-5 功率開關切換機制 21
2-5-1 單極性電壓切換模式 21
2-5-2 雙極性電壓切換模式 24
2-5-3 切換模式比較與選擇 27
2-6 類比訊號取樣與命令更新邏輯 28
2-6-1 波峰取樣波峰更新 28
2-6-2 波峰取樣波谷更新 29
2-7 數位濾波器 30
2-7-1 二階無限長脈衝響應數位濾波器直接模式二 30
2-7-2 特殊變化型數位濾波器 31
第三章 控制迴路建模 33
3-1 MATLAB/Simulink模擬 33
3-2 鎖相迴路控制 37
3-3 內迴路電流控制 44
3-4 外迴路電壓控制 47
第四章 穩定度分析 49
4-1 絕對穩定度 50
4-1-1 閉迴路增益轉移函數 50
4-2-2 閉迴路增益極零點圖 52
4-2 相對穩定度 54
4-2-1 步階響應 54
4-2-2 虛擬阻抗 56
4-2-3 阻抗法 61
4-3 穩定度分析總結 64
第五章 實測模擬比對與系統改善 65
5-1 電網諧波失真實測與模擬結果 65
5-1-1 電網實測與模擬 65
5-1-2 電網建模結果檢討 68
5-2 電網等效阻抗變化實測與模擬結果 69
5-2-1 電網等效阻抗變化實測與模擬 69
5-2-2 電網等效阻抗變化結果檢討 77
5-3 系統問題預測與改善 78
5-3-1 原換流器系統問題 78
5-3-2 改善方法 79
5-3-3 改善方法模擬驗證 82
第六章 結論與未來研究方向 84
6-1 結論 84
6-2 未來研究方向 85
參考文獻 86

[1] B. Kim, S. Kim, J. Park, W. Jung, and C. Won, "A Study on Macromodel of Single-Phase Full-Bridge Inverter Considering Unipolar SPWM and Synchronous Rotating Frame for Improving Model Accuracy and Control Performance," 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), 2018, pp. 1-5.
[2] A. Ganeshan, L. Meegahapola, B. P. McGrath, and D. G. Holmes, "Model Validation of a Three-Phase Inverter EMT Model in DIgSILENT Power Factory," 2020 Australasian Universities Power Engineering Conference (AUPEC), 2020, pp. 1-6.
[3] M. Blachuta, Z. Rymarski, R. Bieda, K. Bernacki, and R. Grygiel, "Design, Modeling and Simulation of PID Control for DC/AC Inverters," 2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR), 2019, pp. 428-433.
[4] Z. Fei, Z. X. Lin, Z. Junjun, and H. Jingsheng, "Hardware-in-the-loop simulation, modeling and close-loop testing for three-level photovoltaic grid-connected inverter based on RT-LAB," 2014 International Conference on Power System Technology, 2014, pp. 2794-2799.
[5] J. H. Latha and B. R. Banakara, "Modeling and analysis of 21 level cascade model multilevel inverter," 2018 2nd International Conference on Inventive Systems and Control (ICISC), 2018, pp. 586-591.
[6] Jianhong Xu, Xiaodong Wei, Fujian Wang, and Xipeng Wang, "Simulating the effect of electric warming concrete layer in ANSYS," 2011 International Conference on Multimedia Technology, 2011, pp. 1705-1707.
[7] Y. Wang and R. Wai, "Design of Discrete-Time Backstepping Sliding- Mode Control for LCL-Type Grid-Connected Inverter," in IEEE Access, vol. 8, 2020, pp. 95082-95098.
[8] Xuanlyu Wu, Guochun Xiao, Yong Lu, Fengwen Chen, and Dapeng Lu, "Discrete-time modeling and stability analysis of grid-connected inverter based on equivalent circuit," 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), 2015, pp. 1222-1226.
[9] Y. Wu, Y. Ye, Q. Zhao, Y. Cao, and Y. Xiong, "Discrete-Time Modified UDE-Based Current Control for LCL-Type Grid-Tied Inverters," in IEEE Transactions on Industrial Electronics, vol. 67, no. 3, March 2020, pp. 2143-2154.
[10] J. He, P. Liu and S. Duan, "Stability Analysis of Multi-paralleled Grid-connected Inverters with Different Controllers in Weak Grid Condition," IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, 2020, pp. 2350-2355.
[11] Y. Wang, X. Wang, F. Blaabjerg, and Z. Chen, "Frequency scanning-based stability analysis method for grid-connected inverter system," 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), 2017, pp. 1575-1580.
[12] J. Wang, J. Yao, H. Hu, Y. Xing, X. He, and K. Sun, "Impedance-based stability analysis of single-phase inverter connected to weak grid with voltage feed-forward control," 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), 2016, pp. 2182-2186.
[13] R. S. R. Sankar, S. V. J. Kumar and G. M. Rao, "Impedance based stability analysis of single-phase PV inverter connected to weak grid with voltage feed forward control," 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), 2017, pp. 2187-2194.
[14] H. Li, C. Liu, Y. Zou, and X. Jiang, "A Stability Improvement Method Based on Parameter Sensitivity for Grid-connected Inverter," IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, 2020, pp. 4649-4654.
[15] A. Kannan, M. Nuschke and D. Strau-Mincu, "LFC model for frequency stability analysis of prospective power systems with high shares of inverter based generation," 2019 IEEE Milan PowerTech, 2019, pp. 1-6.
[16] Jing Bian, Hong Li and T. Q. Zheng, "Stability analysis of grid-connected inverters with LCL-filter based on harmonic balance and Floquet theory," 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), 2014, pp. 3314-3319.
[17] X. Zhao, J. Dong, C. Zhang, and X. Meng, "Modeling and stability analysis of autonomous microgrid composed of inverters based on improved droop control," 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), 2016, pp. 1720-1724.
[18] G. N. Jadhav and D. D. Changan, "Modelling of inverter for stability analysis of microgrid," 2016 IEEE 7th Power India International Conference (PIICON), 2016, pp. 1-6.
[19] T. Kato, K. Inoue, Y. Akiyama, and K. Ohashi, "Stability analysis for grid-connected three-phase inverter with LCL filters," 2015 IEEE 16th Workshop on Control and Modeling for Power Electronics (COMPEL), 2015, pp. 1-7.
[20] M. Cespedes and J. Sun, "Renewable Energy Systems Instability Involving Grid-Parallel Inverters," 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, 2009, pp. 1971-1977.
[21] Hadi Saadat (2011). Power System Analysis. Taiwan: McGraw-Hill international Enterprises LLC.
[22] M. Liserre, R. Teodorescu and F. Blaabjerg, "Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values," in IEEE Transactions on Power Electronics, vol. 21, no. 1, pp. 263-272.
[23] Texas Instruments, TMS320F2806x Microcontrollers datasheet, Mar. 2020
[24] Texas Instruments, TMS320x2806x Technical Reference Manual, Nov. 2019
[25] L. Bowtell and T. Ahfock, "Comparison between unipolar and bipolar single phase gridconnected inverters for PV applications," 2007 Australasian Universities Power Engineering Conference, 2007, pp. 1-5.
[26] Mihail Antchev, "PLL for single phase grid connected inverters," International Journal of Electrical Engineering and Technology (IJEET), 2013, pp. 56-77.
[27] Farid Golnaraghi & Benjamin, C. Kuo (2017). Automatic Control Systems. Singapore: McGraw Hill
[28] J. Wang and J. D. Yan, "Using virtual impedance to analyze the stability of LCL-filtered grid-connected inverters," 2015 IEEE International Conference on Industrial Technology (ICIT), 2015, pp. 1220-1225.
[29] J. Sun, "Impedance-Based Stability Criterion for Grid-Connected Inverters," in IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3075-3078.
[30] “IEEE Standard Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems,” IEEE Std 1547.1-2005, July 2005, pp. 1–62.
[31] T. Wu, Y. Huang, Y. Liu and M. Misra, "Decoupled Direct Digital Control with D-Σ Process and Average Common-Mode Voltage Model for 3Φ3W LCL Converters," 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019, pp. 601-606.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *