帳號:guest(52.14.2.251)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林君豪
作者(外文):Lin, Jun-Hao
論文名稱(中文):對於雙足機器人以及輪型機器人的混合隊伍在外部干擾以及通訊耦合效應下的強健式合作隊伍編隊控制
論文名稱(外文):Robust Collaborative Team Formation Control of Hybrid Teams of Biped Robots and Wheeled Vehicles Under External Disturbance and Communication Interactions
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):黃志良
翁慶昌
李征衛
口試委員(外文):Hwang, Chih-Lyang
Wong, Ching-Chang
Li, Cheng-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:108061584
出版年(民國):110
畢業學年度:110
語文別:英文
論文頁數:40
中文關鍵詞:合作隊伍編隊分散式編隊控制混合系統領先者-跟隨者編隊強健控制參考模型雙足機器人拖拉機拖車線性矩陣不等式
外文關鍵詞:Collaborative team formationdecentralized formation controlHybrid teamleader-follower formationrobust H∞ controlreference modelbiped robottractor-trailerlinear matrix inequality
相關次數:
  • 推薦推薦:1
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在這項研究中,雙足機器人和拖拉機拖車混合團隊的協作團隊組建系統是為一些常見任務設計的。協同組隊系統由多個混合組隊子系統組成。每個混合組隊子系統由一個拖拉機拖車作為領導者和一組雙足機器人作為跟隨者組成。為了便於協作組隊設計,提出了新穎的參考模型,為每個混合團隊中的協作拖拉機-拖車和雙足機器人生成所需的協作時變領導者-跟隨者組隊。因此,協作團隊形成設計問題被簡化為一組獨立的魯棒模型參考跟踪設計問題,用於在外部干擾和來自其他代理的通信耦合下的每個代理。隨後,提出了魯棒的H∞分散協作隊形跟踪控制策略,以實現對每個代理的隊形跟踪控制,並有效地減弱外部干擾和其他代理的通信耦合對每個代理的分散模型參考跟踪性能的影響。為了避免求解每個智能體的魯棒H∞分散式協同團隊編隊跟踪控制的困難Hamilton-Jacobi不等式(HJI),採用數值線性參數變化(LPV)建模方法來近似非線性團隊編隊跟踪誤差每個代理的動態系統,使得 HJI 可以等效地轉換為一組線性矩陣不等式 (LMI),可以通過 MATLAB LMI TOOLBOX 有效地求解。由於採用基於本地信息的魯棒 H∞ 分散式協作組隊跟踪控制方案,協作組隊系統可以擴展到超大型雙足機器人和拖拉機拖車。最後,一個魯棒 H∞ 分散協作的模擬例子給出了三個協作團隊的團隊形成跟踪控制設計,每個混合團隊以一輛拖拉機為領導,六隻雙足機器人作為跟隨者,並與最優的H2分散方法進行比較,以驗證所提出方案的有效性。
In this study, a collaborative team formation system of hybrid teams of biped robots and tractor-trailers is designed for some common task. The collaborative team formation system consists of a number of hybrid team formation subsystems. Each hybrid team formation subsystem is composed of a tractor-trailer as the leader and a group of biped robots as followers. For the convenience of collaborative team formation design, novel reference models are proposed to generate the desired collaborative time-varying leader-follower team formation for the cooperative tractor-trailers and biped robots in each hybrid team. Accordingly, the collaborative team formation design problem is simplified to a set of independent robust model reference tracking design problems for each agent under external disturbances and communication couplings from other agents. Subsequently, the robust H∞
decentralized collaborative team formation tracking control strategy is proposed to achieve the team formation tracking control for each agent and efficiently attenuate the effect of external disturbance and communication coupling from other agents on the decentralized model reference tracking performance of each agent. In order to avoid solving the difficult Hamilton-Jacobi inequality (HJI) of the robust H∞ decentralized collaborative team formation tracking control for each agent, the numerical linear parameter-varying (LPV) modeling method is employed to approximate the nonlinear team formation tracking error dynamic system of each agent such that the
HJI can be equivalently transformed to a set of linear-matrix inequalities (LMIs) which can be efficiently solved by MATLAB LMI TOOLBOX. Since the robust H∞ decentralized collaborative team formation tracking control scheme is employed based on local information, the collaborative team formation system can be extended to very large-scale biped robots and tractor-trailers. Finally, a simulation example of robust H∞ decentralized collaborative
team formation tracking control design of three collaborative teams with one tractor-trailer as the leader and six biped robots as followers in each hybrid team compared with the optimal H2 decentralized method is given to verify the effectiveness of the proposed scheme.
摘要 --------------------------------------------------------------- i
Abstract----------------------------------------------------------- ii
致謝--------------------------------------------------------------- iv
Content------------------------------------------------------------- v
I. Introduction ---------------------------------------------------- 1
II. Preliminaries of tractor-trailer and biped robot --------------- 4
III. Collaborative team formation with decentralized leader-follower structure ---------------------------------------------------------- 9
IV. Problem formulation ------------------------------------------- 11
V. Robust H infinity decentralized collaborative team formation tracking control design for hybrid teams for tractor-trailers and biped robots via numerical modeling approach ---------------------- 22
VI. Simulation Results -------------------------------------------- 27
VII. Conclusion --------------------------------------------------- 37
References -------------------------------------------------------- 38
[1] M. A. K. Niloy et al., “Critical design and control issues of indoor autonomous mobile robots: a review,” IEEE Access, vol. 9, pp.
35338-35370, Feb. 2021.
[2] I. Park, J. Kim and J. Oh, “Online biped walking pattern generation for humanoid Robot KHR-3(KAIST Humanoid Robot - 3: HUBO),”
in Proc. 2006 6th IEEE-RAS Int. Conf. Humanoid Robot, pp. 398-403.
[3] T. Sato, S. Sakaino and K. Ohnishi, “Real-time walking trajectory generation method with three-mass models at constant body height
for three-dimensional biped robots,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 376-383, Feb. 2011.
[4] T. S. Li, Y. Su, S. Liu, J. Hu and C. Chen, “Dynamic balance control for biped robot walking using sensor fusion, kalman filter, and fuzzy logic,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4394-4408, Nov. 2012.
[5] Q. Huang et al., “Planning walking patterns for a biped robot,” IEEE Trans. Robot. Automat., vol. 17, no. 3, pp. 280-289, Jun. 2001.
[6] K. Erbatur and O. Kurt, “Natural ZMP trajectories for biped robot reference generation,” IEEE Trans. Ind. Electron., vol. 56, no. 3,
pp. 835-845, Mar. 2009.
[7] S. Kajita et al., “Biped walking pattern generation by using preview control of zero-moment point,” in Proc. 2003 IEEE Int. Conf.
Robot. Autom., vol.2, pp. 1620-1626.
[8] E. R. Westervelt, J. W. Grizzle and D. E. Koditschek, “Hybrid zero dynamics of planar biped walkers,” IEEE Trans. Automat. Contr.,
vol. 48, no. 1, pp. 42-56, Jan. 2003.
[9] C. Chevallereau, J. W. Grizzle and C. Shih, “Asymptotically stable walking of a five-link underactuated 3-D bipedal robot,” IEEE
Trans. Robot., vol. 25, no. 1, pp. 37-50, Feb. 2009.
[10] T. C. Lee, K. T. Song, C. H. Lee and C. C. Teng, “Tracking control of unicycle-modeled mobile robots using a saturation feedback
controller,” IEEE Trans. Control Syst. Technol., vol. 9, no. 2, pp. 305-318, Mar. 2001.
[11] P. Coelho and U. Nunes, “Path-following control of mobile robots in presence of uncertainties,” IEEE Trans. Robot. Automat., vol. 21,
no. 2, pp. 252-261, Apr. 2005.
[12] A. P. Aguiar and J. P. Hespanha, “Trajectory-tracking and Path-following of underactuated autonomous vehicles with parametric
modeling uncertainty,” IEEE Trans. Automat. Contr., vol. 52, no. 8, pp. 1362-1379, Aug. 2007.
[13] B. S. Park, S. J. Yoo, J. B. Park and Y. H. Choi, “A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots,” IEEE Trans. Control Syst. Technol., vol. 18, no. 5, pp. 1199-1206, Sept. 2010.
[14] A. K. Khalaji and S. A. A. Moosavian, “Robust adaptive controller for a tractor–trailer mobile robot,” IEEE/ASME Trans. Mechatron.,
vol. 19, no. 3, pp. 943-953, Jun. 2014.
[15] E. Kayacan, H. Ramon and W. Saeys, “Robust trajectory tracking error model-based predictive control for unmanned ground vehicles,”
IEEE/ASME Trans. Mechatron., vol. 21, no. 2, pp. 806-814, Apr. 2016.
[16] B. S. Chen, C. S. Wu and H. J. Uang, “A minimax tracking design for wheeled vehicles with trailer based on adaptive fuzzy elimination
scheme,” IEEE Trans. Control Syst. Technol., vol. 8, no. 3, pp. 418-434, May 2000.
[17] Y. Zhang and H. Mehrjerdi, “A survey on multiple unmanned vehicles formation control and coordination: normal and fault situations,” in Proc. 2013 Int. Conf. Unmanned Airc. Syst. (ICUAS), pp. 1087-1096.
[18] E. Seraj and M. Gombolay, “Coordinated control of UAVs for human-centered active sensing of wildfires,” in Proc. 2020 American
Control Conference (ACC), pp. 1645-1652.
[19] C. Luo, J. Nightingale, E. Asemota and C. Grecos, “A UAV-cloud system for disaster sensing applications,” in Proc. 2015 IEEE Veh.
Technol. Conf. (VTC Spring), pp. 1-5.
[20] A. Mora, Javier, et al. “Multi-robot formation control and object transport in dynamic environments via constrained optimization.” Int.
J. Rob. Res., vol. 36, no. 9, pp. 1000–1021, Aug. 2017.
[21] M. C. Gombolay, R. J. Wilcox and J. A. Shah, “Fast scheduling of robot teams performing tasks with temporospatial constraints,”
IEEE Trans. Robot. Automat., vol. 34, no. 1, pp. 220-239, Feb. 2018.
[22] Y. Sabri, N. El Kamoun and F. Lakrami, “A survey: centralized, decentralized, and distributed control scheme in smart grid systems,”
in Proc. 2019 7th Mediterranean Congress of Telecommunications (CMT), pp. 1-11.
[23] M. Y. Lee, B. S. Chen, C. Y. Tsai and C. L. Hwang, “Stochastic H∞ Robust decentralized tracking control of large-scale team
formation UAV network system with time-varying delay and packet dropout under interconnected couplings and wiener fluctuations,”
IEEE Access, vol. 9, pp. 41976-41997, 2021.
[24] C. S. Tseng and B. S. Chen, “H∞ decentralized fuzzy model reference tracking control design for nonlinear interconnected systems,” IEEE Trans. Fuzzy Syst., vol. 9, no. 6, pp. 795-809, Dec. 2001.
[25] G. Liu and S. Zhang, “A survey on formation control of small satellites,” Proc. IEEE, vol. 106, no. 3, pp. 440-457, Mar. 2018.
[26] J. R. T. Lawton, R. W. Beard and B. J. Young, “A decentralized approach to formation maneuvers,” IEEE Trans. Robot. Automat., vol.
19, no. 6, pp. 933-941, Dec. 2003.
[27] B. S. Chen, C. P. Wang and M. Y. Lee, “Stochastic robust team tracking control of multi-UAV networked system under wiener and
poisson random fluctuations,” IEEE Trans. Cybern., pp. 1-14, Jan. 2020.
[28] P. Ogren, M. Egerstedt and X. Hu, “A control Lyapunov function approach to multi-agent coordination,” in Proc. IEEE Conf. Decis.
Control, pp. 1150-1155 vol.2, Dec. 2001.
[29] B. S. Chen, Y. Y. Tsai and M. Y. Lee, “Robust decentralized formation tracking control for stochastic large-scale biped robot team
system under external disturbance and communication requirements,” IEEE Trans. Control. Netw. Syst., vol. 8, no. 2, pp. 654-666, Jun.
2021.
[30] S. Xu, T. Chen and J. Lam, “Robust H∞ filtering for uncertain Markovian jump systems with mode-dependent time delays,” IEEE
Trans. Automat. Contr., vol. 48, no. 5, pp. 900-907, May 2003.
[31] Z. Wang, F. Yang, D. W. C. Ho and X. Liu, “Robust H∞ control for networked systems with random packet losses,” IEEE Trans.
Syst., Man, Cybern. B, vol. 37, no. 4, pp. 916-924, Aug. 2007.
[32] X. Lin, C. Wu and B. Chen, “Robust H∞ Adaptive fuzzy tracking control for MIMO nonlinear stochastic poisson jump diffusion
systems,” IEEE Trans. Cybern., vol. 49, no. 8, pp. 3116-3130, Aug. 2019.
[33] S. Ho, C. Chen and B. Chen, “Analysis for the robust H∞ synchronization of nonlinear stochastic coupling networks through poisson processes and core coupling design,” IEEE Trans. Control. Netw. Syst., vol. 4, no. 2, pp. 223-235, Jun. 2017.
[34] P. Baranyi, “TP model transformation as a way to LMI-based controller design,” IEEE Trans. Ind. Electron, vol. 51, no. 2, pp. 387-400, Apr. 2004.
[35] P. Baranyi, “The generalized TP model transformation for T–S fuzzy model manipulation and generalized stability verification,” IEEE
Trans. Fuzzy Syst., vol. 22, no. 4, pp. 934-948, Aug. 2014.
[36] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “A multilinear singular value decomposition,” SIAM Journal on Matrix Analysis and
Applications, vol. 21, No. 4, pp. 1253–1278, Jan. 2000.
[37] P. Baranyi, P. Varlaki, L. Szeidl and Y. Yam, “Definition of the HOSVD based canonical form of polytopic dynamic models,” in Proc.
2006 IEEE Int. Conf. Mechatron., pp. 660-665.
[38] M. Yue, X. Hou, M. Fan and R. Jia, “Coordinated trajectory tracking control for an underactuated tractor-trailer vehicle via MPC and SMC approaches,” in Proc. 2017 2nd Int. Conf Adv. Robot. Mechatron. (ICARM), pp. 82-87.
[39] C. H. An, C. G. Atkeson, J. D. Griffiths and J. M. Hollerbach, “Experimental evaluation of feedforward and computed torque control,”
IEEE Trans. Robot. Automat., vol. 5, no. 3, pp. 368-373, Jun. 1989.
[40] K. M. Lynch and F. C. Park, Modern robotics: mechanics, planning,and control. Cambridge, U. K.: Cambridge Univ. Press, 2017.
[41] J. Lee, H. Jung, H. Hu and D. H. Kim, “Collaborative control of UAV/UGV,” in Proc. 2014 11th Int. Conf. Ubiquitous Robot. Ambient
Intell. (URAI), pp. 641-645.
[42] L. Chaimowicz, T. Sugar, V. Kumar and M. F. M. Campos, “An architecture for tightly coupled multi-robot cooperation,” in Proc.
2001 ICRA. IEEE Int. Conf. Robot. Autom., pp.2992-2997, vol.3.
[43] R. W. Beard, T. W. McLain, D. B. Nelson, D. Kingston and D. Johanson, “Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs,” Proc. IEEE, vol. 94, no. 7, pp. 1306-1324, July 2006.
[44] H. Park and S. A. Hutchinson, “Fault-tolerant rendezvous of multirobot systems,” IEEE Trans. Robot., vol. 33, no. 3, pp. 565-582,
June 2017.
[45] S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear matrix inequalities in system and control theory. Philadelphia, PA, USA: SIAM, 1994.
[46] C. S. Tseng, B. S. Chen and H. J. Uang, “Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model,” IEEE
Trans. Fuzzy Syst., vol. 9, no. 3, pp. 381-392, June 2001.
[47] G. Feng, “A survey on analysis and design of model-based fuzzy control systems,” IEEE Trans. Fuzzy Syst., vol. 14, no. 5, pp. 676-697, Oct. 2006.
[48] O. Michel, “Webots: professional mobile robot simulation,” Int. J. Adv. Robot. Syst., vol. 1, no. 1, pp. 39-42, Mar. 2004.
[49] Y. Chang and B. Chen, “A fuzzy approach for robust reference-tracking-control design of nonlinear distributed parameter time-delayed systems and its application,” IEEE Trans. Fuzzy Syst., vol. 18, no. 6, pp. 1041-1057, Dec. 2010.
[50] W. Zhang, L. Xie and B. S. Chen, Stochastic H2/H∞ control: A Nash Game Approach. Boca Raton, FL, USA: CRC Press, 2017.
[51] A. J. van der Schaft, “L/sub 2/-gain analysis of nonlinear systems and nonlinear state-feedback H/sub infinity / control,” IEEE Trans. Automat. Contr., vol. 37, no. 6, pp. 770-784, June 1992.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *