|
[1] McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, P.115-133, 1943 [2] Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (1986-10-09). "Learning representations by back-propagating errors". Nature. 323 (6088): 533–536. Bibcode:1986Natur.323..533R. doi:10.1038/323533a0. ISSN 1476-4687. S2CID 205001834. [3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. [4] Howard, A. et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” ArXiv , 2017. [5] X. Zhang, X. Zhou, M. Lin, and J. Sun, 'Shufflenet: An extremely efficient convolutional neural network for mobile devices,' in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6848-6856. [6] Lee Chankyu, Sarwar Syed Shakib, Panda Priyadarshini, Srinivasan Gopalakrishnan, Roy Kaushik. “Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures.” Frontiers in Neuroscience, 2020. [7] Jianhao Ding, Zhaofei Yu, Yonghong Tian, Tiejun Huang, ” Optimal ANN-SNN Conversion for Fast and Accurate Inference in Deep Spiking Neural Networks”,IJCAI,2021 [8] Han, Song, et al. “Learning both weights and connections for efficient neural network.” Advances in neural information processing systems. 2015. [9] N. P. Jouppi et al., "In-datacenter performance analysis of a tensor processing unit," In ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), pp. 1-12, 2017. [10] Y.-H. Chen, et al., “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks.” In JSSC, ISSCC Special Issue, Vol. 52, No. 1, pp. 127-138, 2017. [11] V. Sze, T.-J. Yang, Y.-H. Chen, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey." In Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, December 2017. [12] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothee Masquelier, Anthony S. Maida, “Deep Learning in Spiking Neural Networks,” ArXiv , 2017. [13] J. Zylberberg, J. T. Murphy, and M. R. DeWeese, “A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptive fields,” PLoS Comput Biol, vol. 7, no. 10, p.e1002250, 2011. [14] A. Tavanaei, Z. Kirby, and A. S. Maida, “Training spiking ConvNets by STDP and gradient descent,” in Neural Networks (IJCNN), The 2018 International Joint Conference on. IEEE, 2018, pp. 1–8. [15] B. Rueckauer, Y. Hu, I.-A. Lungu, M. Pfeiffer, and S.-C. Liu, “Conversion of continuous-valued deep networks to efficient event-driven networks for image classification,” Frontiers in Neuroscience, vol. 11, p. 682, 2017. [16] Hong-Han Lien, Tian-Sheuan Chang, “Sparse Compressed Spiking Neural Network Accelerator for Object Detection,” ArXiv , 2022 [17] Shijie Cao, Lingxiao Ma, Wencong Xiao, Chen Zhang, Yunxin Liu, Lintao Zhang, Lanshun Nie, and Zhi Yang2, “SeerNet: Predicting Convolutional Neural Network Feature-Map Sparsity through Low-Bit Quantization” CVPR, 2019 [18] P.-Y. Chuang, P.-Y. Tan, C.-W. Wu and J.-M. Lu, "A 90nm 103.14 tops/w binary-weight spiking neural network cmos asic for real-time object classification"2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA [19] Hong-Han Lien, Chung-Wei Hsu, and Tian-Sheuan Chang, " VSA: Reconfigurable Vectorwise Spiking Neural Network Accelerator" 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea [20] S. Narayanan, K. Taht, R. Balasubramonian, E. Giacomin and P.-E. Gaillardon, "Spinalflow: an architecture and dataflow tailored for spiking neural networks", 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), Valencia, Spain, 2020, pp. 349-362 [21] Jeong-Jun Lee, Peng Li “Reconfigurable Dataflow Optimization for Spatiotemporal Spiking Neural Computation on Systolic Array Accelerators”, 2020 IEEE 38th International Conference on Computer Design (ICCD)
|