|
[1] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2015. [2] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” TPAMI, 2017. [3] A. Kanezaki, “Unsupervised image segmentation by backpropagation,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process., 2018. [4] A. Bielski and P. Favaro, “Emergence of object segmentation in perturbed generative models,” arXiv preprint arXiv:1905.12663, 2019. [5] C. Rother, T. Minka, A. Blake, and V. Kolmogorov, “Cosegmentation of image pairs by histogram matching-incorporating a global constraint into mrfs,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2006. [6] G. Kim and E. P. Xing, “On multiple foreground cosegmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2012. [7] T. Ma and L. Jan Latecki, “Graph transduction learning with connectivity constraints with application to multiple foreground cosegmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2013. [8] H. Zhu, J. Lu, J. Cai, J. Zheng, and N. M. Thalmann, “Multiple foreground recognition and cosegmentation: An object-oriented crf model with robust higher-order potentials,” in Proc. Winter Conf. Appl. Comput. Vis., 2014. [9] H.-S. Chang and Y.-C. F. Wang, “Optimizing the decomposition for multiple foreground cosegmentation,” Comput. Vis. Image Understanding, 2015. [10] F. Wang, Q. Huang, M. Ovsjanikov, and L. J. Guibas, “Unsupervised multi-class joint image segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2014. [11] W. Yang, Z. Sun, B. Li, J. Hu, and K. Yang, “Unsupervised multiple object cosegmentation via ensemble miml learning,” in Proc. Int. Conf. Multimedia Modeling, 2017. [12] F. Meng, H. Li, S. Zhu, B. Luo, C. Huang, B. Zeng, and M. Gabbouj, “Constrained directed graph clustering and segmentation propagation for multiple foregrounds cosegmentation,” IEEE Trans. Circuits Syst. Video Technol., 2015. [13] H. Li, F. Meng, Q. Wu, and B. Luo, “Unsupervised multiclass region cosegmentation via ensemble clustering and energy minimization,” IEEE Trans. Circuits Syst. Video Technol., 2013. [14] K.-J. Hsu, Y.-Y. Lin, and Y.-Y. Chuang, “Co-attention cnns for unsupervised object co-segmentation.” in Proc. Int. Joint Conf. Artificial Intell., 2018. [15] K. R. Jerripothula, J. Cai, F. Meng, and J. Yuan, “Automatic image cosegmentation using geometric mean saliency,” in Proc. IEEE Int. Conf. Image Process., 2014. [16] J. Dai, Y. Nian Wu, J. Zhou, and S.-C. Zhu, “Cosegmentation and cosketch by unsupervised learning,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2013. [17] R. Quan, J. Han, D. Zhang, and F. Nie, “Object co-segmentation via graph optimized-flexible manifold ranking,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2016. [18] C.-C. Tsai, W. Li, K.-J. Hsu, X. Qian, and Y.-Y. Lin, “Image co-saliency detection and co-segmentation via progressive joint optimization,” IEEE Trans. Image Process., 2018. [19] C.-C. Tsai, K.-J. Hsu, Y.-Y. Lin, X. Qian, and Y.-Y. Chuang, “Deep co-saliency detection via stacked autoencoder-enabled fusion and selftrained cnns,” IEEE Trans. Multimedia, 2019. [20] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis., 2004. [21] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2005. [22] L. Mukherjee, V. Singh, and J. Peng, “Scale invariant cosegmentation for image groups,” in CVPR, 2011. [23] J. C. Rubio, J. Serrat, A. Lopez, and N. Paragios, “Unsupervised ´ co-segmentation through region matching,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2012. [24] S. Vicente, C. Rother, and V. Kolmogorov, “Object cosegmentation,” Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2011. [25] W. Li, O. H. Jafari, and C. Rother, “Deep object co-segmentation,” in Proc. Asian Conf. Comput. Vis., 2018. [26] H. Chen, Y. Huang, and H. Nakayama, “Semantic aware attention based deep object co-segmentation,” in Proc. Asian Conf. Comput. Vis., 2018. [27] Joulin, A and Bach, F and Ponce, J, “Multi-class cosegmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2012. [28] A. Kolesnikov and C. H. Lampert, “Seed, expand and constrain: Three principles for weakly-supervised image segmentation,” in Proc. European Conf. Comput. Vis. Springer, 2016. [29] A. Roy and S. Todorovic, “Combining bottom-up, top-down, and smoothness cues for weakly supervised image segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2017. [30] Y. Wei, J. Feng, X. Liang, M.-M. Cheng, Y. Zhao, and S. Yan, “Object region mining with adversarial erasing: A simple classification to semantic segmentation approach,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2017. [31] Y. Wei, H. Xiao, H. Shi, Z. Jie, J. Feng, and T. S. Huang, “Revisiting dilated convolution: A simple approach for weakly-and semi-supervised semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018. [32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Neural Inf. Process. Syst., 2017. [33] J. Cheng, L. Dong, and M. Lapata, “Long short-term memory-networks for machine reading,” arXiv preprint arXiv:1601.06733, 2016. [34] R. Paulus, C. Xiong, and R. Socher, “A deep reinforced model for abstractive summarization,” arXiv preprint arXiv:1705.04304, 2017. [35] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neural machine translation,” arXiv preprint arXiv:1508.04025, 2015. [36] G. Lin, C. Shen, A. van den Hengel, and I. Reid, “Efficient piecewise training of deep structured models for semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2016, pp. 3194–3203. [37] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual attention network for scene segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., June 2019. [38] J. Tang, R. Hong, S. Yan, T.-S. Chua, G.-J. Qi, and R. Jain, “Image annotation by k nn-sparse graph-based label propagation over noisily tagged web images,” TIST, 2011. [39] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention generative adversarial networks,” in Proc. Int. Conf. Mach. Learn., 2019. [40] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., June 2018. [41] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014. [42] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2009. [43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2016. [44] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014. [45] Z.-H. Yuan, T. Lu, Y. Wu et al., “Deep-dense conditional random fields for object co-segmentation.” in IJCAI, 2017, pp. 3371–3377. [46] B. Zhang, J. Xiao, Y. Wei, M. Sun, and K. Huang, “Reliability does matter: An end-to-end weakly supervised semantic segmentation approach,” in Proc. Int. Conf. Artif. Intell., 2020. [47] Y. Oh, B. Kim, and B. Ham, “Background-aware pooling and noiseaware loss for weakly-supervised semantic segmentation,” 2021. [48] P. Krahenbuhl and V. Koltun, “Efficient inference in fully connected crfs with gaussian edge potentials,” in Proc. Neural Inf. Process. Syst., 2011. [49] M. Rubinstein, A. Joulin, J. Kopf, and C. Liu, “Unsupervised joint object discovery and segmentation in internet images,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2013. [50] D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen, “icoseg: Interactive co-segmentation with intelligent scribble guidance,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2010. [51] J. Winn, A. Criminisi, and T. Minka, “Object categorization by learned universal visual dictionary,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2005. [52] A. Faktor and M. Irani, “Co-segmentation by composition,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2013. [53] G. Kim, E. P. Xing, L. Fei-Fei, and T. Kanade, “Distributed cosegmentation via submodular optimization on anisotropic diffusion,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2011.
|