帳號:guest(3.22.71.220)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳泓仁
作者(外文):Chen, Hung-Jen
論文名稱(中文):透過實例感知參數化減少在線持續學習時的災難性遺忘
論文名稱(外文):Mitigating Forgetting in Online Continual Learning via Instance-Aware Parameterization
指導教授(中文):孫民
指導教授(外文):Sun, Min
口試委員(中文):李濬屹
陳祝嵩
口試委員(外文):Lee, Chun-Yi
Chen, Chu-Song
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:108061519
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:30
中文關鍵詞:深度學習神經網路架構探索持續學習在線學習
外文關鍵詞:Deep LearningNeural Architecture SearchContinual LearningOnline Learning
相關次數:
  • 推薦推薦:0
  • 點閱點閱:402
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在線持續學習(Online continual learning)是一個需要機器學習模型從連續的數據流中學習,並且無法重新訪問以前遇到的數據資料的困難情境。模型需要解決任務級(task-level)的遺忘問題,以及同一任務中的實例級別(instance-level)的遺忘問題。為了克服這種情況,我們採用神經網絡中的“實例感知”(Instance aware),其中對於每個數據實例,將透過由控制器(controller)從元圖(meta-graph)搜索到的網路路徑做預測。此外,為了保存我們從過去的實例中學到的知識,我們提出了一種保護機制:若這些實例與過往的不相似,將會限制該實例的梯度更新以防止覆蓋與其不相似實例所經過的路徑。反之,如果傳入的實例與以前的實例具有相似之處,則鼓勵微調(Fine tune)以往相似實例的路徑。選擇路徑的機制是由控制器根據根據實例相似性決定的。實驗結果表明,於在線持續學習的情境下,所提出的方法在CIFAR10,CIFAR100和TinyImageNet等數據集勝過當前表現最好技術。此外,該方法也有測試在更貼近現實的情境,即當任務的界線是模糊時,也勝過了表現最好技術。
Online continual learning is a challenging scenario where a model needs to learn from a continuous stream of data without revisiting any previously encountered data instances. The phenomenon of catastrophic forgetting is worsened since the model should not only address the forgetting at the task-level but also at the data instance-level within the same task. To mitigate this, we leverage the concept of "instance awareness" in the neural network, where each data instance is classified by a path in the network searched by the controller from a meta-graph. To preserve the knowledge we learn from previous instances, we proposed a method to protect the path by restricting the gradient updates of one instance from overriding past updates calculated from previous instances if these instances are not similar. On the other hand, it also encourages fine-tuning the path if the incoming instance shares the similarity with previous instances. The mechanism of selecting paths according to instances similarity is naturally determined by the controller, which is compact and online updated. Experimental results show that the proposed method outperforms state-of-the-arts in online continual learning. Furthermore, the proposed method is evaluated against a realistic setting where the boundaries between tasks are blurred. Experimental results confirm that the proposed method outperforms the state-of-the-arts on CIFAR-10, CIFAR-100, and Tiny-ImageNet.
摘要
Abstract
1 Introduction--------------------------------------------1
2 Related Work--------------------------------------------5
3 Method--------------------------------------------------9
3.1 Meta Graph-Controller Framework ----------------------9
3.2 Training the Controller-------------------------------10
3.3 Training the Meta-Graph-------------------------------11
3.4 Encouraging Explorations------------------------------13
4 Experiments---------------------------------------------15
4.1 Experiment Setup--------------------------------------15
4.2 Baselines---------------------------------------------16
4.3 Quantitative Results----------------------------------17
4.4 Qualitative Analysis: Distribution of Architectures---19
4.5 Qualitative Analysis: Instance-Awareness--------------21
4.6 Ablation Study: Count-Based Search Exploration--------22
4.7 Ablation Study: Weight Regularization-----------------23
5 Conclusion----------------------------------------------24
A Symbol Table--------------------------------------------25
B Algorithm-----------------------------------------------26
References------------------------------------------------27
[1]D.Lopez­PazandM.Ranzato, “Gradient episodic memory for continual learning,” in Advances in Neural Information Processing Systems, pp. 6467–6476, 2017.1,6,17
[2]A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient lifelong learning with A-­GEM,” in International Conference on Learning Representations,2019.1,6,16,17,18,20
[3]R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio, “Gradient-based sample selection for online continual learning,” in Advances in Neural Information Processing Sys­tems 32(H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché­Buc, E. Fox, and R. Garnett, eds.), pp. 11816–11825, Curran Associates, Inc., 2019.1,6,7,16,17,18,19,20
[4]R. Aljundi, E. Belilovsky, T. Tuytelaars, L. Charlin, M. Caccia, M. Lin, and L. Page­Caccia, “Online continual learning with maximal interfered re­trieval,” in Advances in Neural Information Processing Systems 32(H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché­Buc, E. Fox, and R. Garnett, eds.),pp. 11849–11860, Curran Associates, Inc., 2019.1,6,7
[5]J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,K.Milan, J.Quan, T.Ramalho, A.Grabska­Barwinska, et al., “Overcoming catas­trophic forgetting in neural networks,” Proceedings of the national academy of sciences, vol. 114, no. 13, pp. 3521–3526, 2017.1,5,12,17,18,19,20
[6]M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro, “Learn­ing to learn without forgetting by maximizing transfer and minimizing interfer­ence,” in International Conference on Learning Representations, 2019.2,6,7
[7]A.­C. Cheng, C. H. Lin, D.­C. Juan, W. Wei, and M. Sun, “Instanas: Instance­aware neural architecture search,”arXiv preprint arXiv:1811.10201, 2018.2,7,9
[8]Z.Wu, T.Nagarajan, A.Kumar, S.Rennie, L.S.Davis, K.Grauman, and R.Feris, “Blockdrop: Dynamic inference paths in residual networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8817–8826,2018.2
[9]A.VeitandS.Belongie, “Convolutional networks with adaptive inference graphs,” in Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–18, 2018.227
[10]T. L. Hayes and C. Kanan, “Lifelong machine learning with deep streaming linear discriminant analysis,” in Proceedings of the IEEE/CVF Conference on ComputerVision and Pattern Recognition Workshops, pp. 220–221, 2020.5,6
[11]X. Li, Y. Zhou, T. Wu, R. Socher, and C. Xiong, “Learn to grow: A continual structure learning framework for overcoming catastrophic forgetting,” in Interna­tional Conference on Machine Learning, pp. 3925–3934, 2019.5,12
[12]A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single network by iterative pruning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7765–7773, 2018.5,10
[13]J. Serra, D. Suris, M. Miron, and A. Karatzoglou, “Overcoming catastrophic for­getting with hard attention to the task,” in Proceedings of the 35th International Conference on Machine Learning(J. Dy and A. Krause, eds.), vol. 80 ofPro­ceedings of Machine Learning Research, (Stockholmsmässan, Stockholm Swe­den), pp. 4548–4557, PMLR, 10–15 Jul 2018.5,10,17,18,19,20
[14]C.­Y.Hung, C.­H.Tu, C.­E.Wu, C.­H.Chen, Y.­M.Chan, andC.­S.Chen, “Com­pacting, picking and growing for unforgetting continual learning,” in Advances in Neural Information Processing Systems, pp. 13647–13657, 2019.5
[15]R.Aljundi, P.Chakravarty,andT.Tuytelaars, “Expertgate: Lifelong learning with a network of experts,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3366–3375, 2017.5,6
[16]J. Rajasegaran, M. Hayat, S. Khan, F. S. Khan, and L. Shao, “Random path selec­tion for incremental learning,” Advances in Neural Information Processing Sys­tems, 2019.5,6,16,17,18
[17]T. L. Hayes, N. D. Cahill, and C. Kanan, “Memory efficient experience replay for streaming learning,” in 2019 International Conference on Robotics and Automa­tion (ICRA), pp. 9769–9776, IEEE, 2019.6
[18]T. L. Hayes, K. Kafle, R. Shrestha, M. Acharya, and C. Kanan, “Remind your neural network to prevent catastrophic forgetting,” in Proceedings of the European Conference on Computer Vision (ECCV), 2020.6
[19]Y.­C.Hsu, Y.­C.Liu, A.Ramasamy, and Z.Kira, “Re­ evaluating continual learning scenarios: A categorization and case for strong baselines,” in NeurIPS Continual learning Workshop, 2018.6,7
[20]G.M. van de Ven and A.S.Tolias, “Three scenarios for continual learning,”arXivpreprint arXiv:1904.07734, 2019.6,7
[21]S. Yan, J. Xie, and X. He, “Der: Dynamically expandable representation for class incremental learning,”arXiv preprint arXiv:2103.16788, 2021.6
[22]G. Gupta, K. Yadav, and L. Paull, “La­maml: Look­ahead meta-learning for con­tinual learning,”arXiv preprint arXiv:2007.13904, 2020.628
[23]J.Zhang, J.Zhang, S.Ghosh, D.Li, S.Tasci, L.Heck, H.Zhang,andC.­C.J.Kuo, “Class ­incremental learning via deep model consolidation,” inThe IEEE Winter Conference on Applications of Computer Vision, pp. 1131–1140, 2020.7
[24]G. Bender, P.­J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, “Understand­ing and simplifying one­ shot architecture search,” in International Conference on Machine Learning, pp. 549–558, 2018.7,12
[25]E. Bengio, P.­L. Bacon, J. Pineau, and D. Precup, “Conditional computation in neural networks for faster models,”arXiv preprint arXiv:1511.06297, 2015.7
[26]R. M. French, “Using semi­distributed representations to overcome catastrophic forgetting in connectionist networks,” in Proceedings of the 13th annual cognitive science society conference, vol. 1, pp. 173–178, 1991.7
[27]M. Lin, J. Fu, and Y. Bengio, “Conditional computation for continual learning,”arXiv preprint arXiv:1906.06635, 2019.7
[28]R.K.Srivastava, J.Masci, S.Kazerounian, F.Gomez, andJ.Schmidhuber, “Com­pete to compute,” in Advances in neural information processing systems, pp.2310–2318, 2013.7
[29]M.Mundt, Y.W.Hong, I.Pliushch, and V.Ramesh, “A wholistic view of continual learning with deep neural networks: Forgotten lessons and the bridge to active and open-world learning,”arXiv preprint arXiv:2009.01797, 2020.8
[30]B. Liu, “Learning on the job: Online lifelong and continual learning,” inProceed­ings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13544–13549,2020.8
[31]K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog­nition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.9,16
[32]D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J. Liu, and D. Marculescu, “Single­path nas: Designing hardware ­efficient convnets in less than 4 hours,” inarXiv preprint arXiv:1904.02877, 2019.10
[33]S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel, “Self­critical se­quence training for image captioning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7008–7024, 2017.11
[34]S. Kornblith, M. Norouzi, H. Lee, and G. E. Hinton, “Similarity of neural network representations revisited,” in Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9­15 June 2019, Long Beach, California, USA(K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97 of Proceedings of Machine Learning Research, pp. 3519–3529, PMLR, 2019.13
[35]H. Tang, R. Houthooft, D. Foote, A. Stooke, O. X. Chen, Y. Duan, J. Schulman,F. DeTurck, and P. Abbeel, “# exploration: A study of count­based exploration for deep reinforcement learning,” in Advances in neural information processing systems, pp. 2753–2762, 2017.1329
[36]R. Aljundi, K. Kelchtermans, and T. Tuytelaars, “Task­ free continual learning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11254–11263, 2019.15,19
[37]H.Pham, M.Y.Guan, B.Zoph, Q.V.Le, and J.Dean, “Efficient neural architecture search via parameter sharing,” in Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July10­15, 2018, pp. 4092–4101, 2018.17,18
[38]T. DeVries and G. W. Taylor, “Improved regularization of convolutional neural networks with cutout,”arXiv preprint arXiv:1708.04552, 2017.24
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *